European journal of pharmacology
-
Since histamine H3 and H4 receptors are coupled to heterotrimeric Gi/o proteins, a signal transduction pathway associated with inhibition of neurotransmitter release, the present study has investigated the inhibition of the rat cardioaccelerator sympathetic outflow induced by the H3/H4 receptor agonist immepip by using antagonists for histamine H1 (ketotifen), H2 (ranitidine), H3 (thioperamide) and H4 (JNJ7777120) receptors. For this purpose, 102 male Wistar rats were pithed, artificially ventilated and prepared for either preganglionic spinal (C7-T1) stimulation of the cardioaccelerator sympathetic outflow (n=90) or i.v. bolus injections of noradrenaline (n=12). This approach resulted in frequency-dependent and dose-dependent tachycardic responses, respectively. ⋯ Moreover, the cardiac sympatho-inhibition induced by 10 μg/kg min immepip (which failed to affect the tachycardic responses to i.v. noradrenaline) was: (i) unaltered after i.v. treatment with 1 ml/kg vehicle, 100 μg/kg ketotifen, 3000 μg/kg ranitidine, 30 μg/kg thioperamide or 300 μg/kg JNJ7777120; and (ii) abolished after 100 μg/kg thioperamide (i.v.). These doses of antagonists, which did not affect per se the sympathetically-induced tachycardic responses, were high enough to block their respective receptors. In conclusion, the cardiac sympatho-inhibition induced by 10 μg/kg.min immepip involves histamine H3 receptors, with further pharmacological evidence excluding the involvement of H1, H2 and H4 receptors.
-
Here we studied whether and through which mechanisms spinal administration of histamine dihydrochloride (histamine) attenuates pain behavior in neuropathic animals. Experiments were performed in rats with spinal nerve ligation-induced neuropathy and a chronic intrathecal catheter for spinal drug delivery. Mechanical hypersensitivity was assessed with monofilaments while radiant heat was used for assessing nociception. ⋯ Additionally, histamine prevented central (presumably postsynaptically-induced) facilitation of hypersensitivity induced by N-methyl-d-aspartate. The results indicate that spinal histamine at the dose range of 0.1-10µg selectively attenuates mechanical hypersensitivity and ongoing pain in neuropathy. The spinal histamine-induced antihypersensitivity effect involves histamine H2 and GABA(A) receptors and (presumably neuropathy-induced) co-activation of spinal α1-adrenoceptors.
-
We investigated functional alterations of voltage-gated calcium channels (VGCCs) in excitatory synaptic transmission from primary afferent A- and C-fibers after peripheral nerve injury. Patch-clamp recordings were performed on substantia gelatinosa (SG) neurons of spinal cord slices with an attached dorsal root, prepared from L5 spinal nerve-ligated (SNL) rats. The effects of neuronal VGCC blockers, ω-conotoxin GVIA (ω-CgTX) for N-type channels and ω-agatoxin IVA (ω-AgaIVA) for P/Q-type channels, on evoked excitatory postsynaptic currents (eEPSCs) by stimulation of A- or C-fibers were studied. ⋯ In terms of A-fiber eEPSCs, ω-CgTX elicited similar inhibition in nerve-injured and sham-operated rats. ω-AgaIVA (0.1μM) had less effect on A- or C-fiber eEPSCs. These results indicate that N-type, but not P/Q-type, VGCCs mainly contribute to excitatory synaptic transmission from A- and C-fibers in the spinal dorsal horn. More importantly, following nerve injury, the functional contribution of N-type VGCCs to nociceptive transmission is increased in the pre-synaptic terminals of injured C-fibers.