European journal of pharmacology
-
A few decades ago, cardiac muscle was discovered to possess signalling pathways that, when activated, protect the myocardium against the damage induced by ischaemia-reperfusion. The ability of cardiac muscle to protect itself against injury has been termed 'cardioprotection'. Many compounds and procedures can trigger cardioprotection including conditionings (exposure to brief episodes of ischaemia-reperfusion to protect against sustained ischaemia-reperfusion), hypoxia, adenosine, acetylcholine, adrenomedullin, angiotensin, bradykinin, catecholamines, endothelin, estrogens, phenylephrine, opioids, testosterone, and many more. ⋯ Although a lot of information about cardioprotection has been acquired, there are still two major outstanding issues to be addressed in the future 1) better understanding of spatio-temporal relationships between signalling elements, and; 2) devising therapeutic strategies against myocardial diseases based on cardioprotective signalling. Further research is required to paint integral picture of cardioprotective signalling and more clinical studies are required to properly test clinical efficacy and safety of potential cardioprotective strategies. Therapies against cardiac diseases based on cardioprotective strategies would be a perfect adjunct to current therapeutic strategies based on restitution of coronary blood flow and regulation of myocardial metabolic demands.
-
Immune cell death caused by neutrophil extracellular traps (NETs), referred to as NETosis, can contribute to the pathogenesis of endotoxemia and organ damage. Although the mechanisms by which infection induces NETosis and how that leads to organ dysfunction remain largely unknown, NET formation is often found following citrullination of histone H3 (CitH3) by peptidylarginine deiminase (PAD). We hypothesized that lipopolysaccharide (LPS)-induced activation of PAD and subsequent CitH3-mediated NET formation increases endothelial permeability and pulmonary dysfunction and, therefore, that inhibition of PAD can mitigate damage and improve survival in lethal endotoxemia. ⋯ However, YW3-56 reduced CitH3 production and NET formation by neutrophils following LPS exposure. Moreover, treatment with YW3-56 decreased the levels of circulating CitH3 and abolished neutrophil activation and NET formation in the lungs of mice with endotoxemia. These data suggest a novel mechanism by which PAD-NET-CitH3 can play a pivotal role in pulmonary vascular dysfunction and the pathogenesis of lethal endotoxemia.
-
Cebranopadol is a novel, first-in-class analgesic with agonist activity at the nociceptin/orphanin FQ opioid peptide (NOP) receptor as well as the classical opioid peptide receptors. This study investigated the anti-hypersensitive effect of cebranopadol in a rat model of arthritic pain. Selective antagonists were used to probe the involvement of the NOP receptor and the µ-opioid peptide (MOP) receptors. ⋯ The anti-hypersensitive effect of morphine 2.15 mg/kg i.v. was inhibited by naloxone but not by J-113397. Conversely, the anti-hypersensitive effect of Ro65-6570 0.464 mg/kg i.v. was inhibited by J-113397 but not by naloxone. In conclusion, cebranopadol evoked potent anti-hypersensitive efficacy in a rat model of arthritic pain, and this involved agonist activity at both the NOP and MOP receptors.