European journal of pharmacology
-
Comparative Study
Effects of adenosine receptor antagonists on pial arteriolar dilation during carbon dioxide inhalation.
The role of adenosine in the cerebrovascular response to carbon dioxide inhalation was evaluated in two sets of experiments. The pial circulation was recorded by a Laser-Doppler flow probe placed over a closed cranial window in methoxyflurane anesthetized rats. Topical application of the nonselective adenosine receptor antagonist caffeine (1 mM), the selective A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX,1 microM), or the selective A2A receptor antagonist 4-(2-[7-amino-2-(2-furyl)[1,2,4]triazolo[2,3-a]triazin-5-yl amino]ethyl) phenol (ZM 241385, 1 microM) all failed to affect mean arterial blood pressure, basal cerebral blood flow, or the carbon dioxide-evoked hyperemia. ⋯ In a second series of experiments, we evaluated the ability of 10% carbon dioxide inhalation for 8 min to elicit a release of adenosine from the cerebral cortex. Adenosine levels in the cortical superfusates rose significantly during periods of carbon dioxide inhalation. The data suggest that following the removal of the confounding effects of nitric oxide, which are unlikely to be mediated locally, a significant contribution by adenosine A2A receptor activation to the carbon dioxide-evoked cortical hyperemia was evident.
-
The purpose of this study was to assess, in rats, the antinociceptive effects of levetiracetam (i.p.), a novel antiepileptic drug, in acute pain tests and in two models of human neuropathic pain. Levetiracetam and carbamazepine contrasted morphine by an absence of effect in the tail flick and hot plate tests. ⋯ In streptozocin-induced diabetic rats, levetiracetam dose-dependently increased the vocalization threshold from 17 to 120 mg/kg reaching a similar effect as 10 mg/kg of carbamazepine. These results indicate that levetiracetam induces an antihyperalgesic effect in two models of human neuropathic pain, suggesting a therapeutic potential in neuropathic pain patients.
-
Multiple high-dose administrations of the dopamine-releasing agent, methamphetamine, rapidly and persistently decrease vesicular dopamine uptake in purified vesicles prepared from striata of treated rats. Because important differences in the neurotoxic effects of stimulants have been documented in rats and mice, the purpose of this study was to determine if methamphetamine-induced effects in rats occur in mice and to elucidate mechanisms underlying these effects. ⋯ Unlike methamphetamine, the dopamine reuptake inhibitors, methylphenidate and cocaine, rapidly increased vesicular dopamine uptake. The implications of these phenomena are discussed.
-
Cannabinoids are cell membrane-derived signalling molecules that are released from nerves, blood cells and endothelial cells, and have diverse biological effects. They act at two distinct types of G-protein-coupled receptors, cannabinoid CB(1) and CB(2) receptors. Cannabinoid CB(1) receptors are highly localised in the central nervous system and are also found in some peripheral tissues, and cannabinoid CB(2) receptors are found outside the central nervous system, in particular in association with immune tissues. ⋯ In the central nervous system, cannabinoids function as retrograde signalling molecules, inhibiting via presynaptic cannabinoid CB(1) receptors the release of classical transmitter following release from the postsynaptic cell. At the neuroeffector junction, it is more likely that cannabinoids are released from prejunctional sites, as the neuroeffector junction is wide in some peripheral tissues and cannabinoids are rapidly taken up and inactivated. Understanding the actions of cannabinoids as modulators of peripheral neurotransmission is relevant to a variety of biological systems and possibly their disorders.
-
Previously, we reported that the alpha(1A)-adrenoceptor, but not the alpha(1D)-adrenoceptor, mediates pupillary dilation elicited by sympathetic nerve stimulation in rats. This study was undertaken to further characterize the alpha-adrenoceptor subtypes mediating pupillary dilation in response to both neural and agonist activation. Pupillary dilator response curves were generated by intravenous injection of norepinephrine in pentobarbital-anesthetized rats. ⋯ Mydriatic responses to norepinephrine were significantly antagonized by intravenous administration of both WB-4101 and 5-methylurapidil, but neither by L-765314 nor by BMY-7378. L-765314 (0.3-3 mg/kg, i.v.) was also ineffective in inhibiting the mydriasis evoked by cervical sympathetic nerve stimulation. These results suggest that alpha(1B)-adrenoceptors do not mediate sympathetic mydriasis in rats, and that the alpha(1A)-adrenoceptor is the exclusive subtype mediating mydriatic responses in this species.