European journal of pharmacology
-
Visceral hypersensitivity and an increased response to stress are two of the main symptoms of irritable bowel syndrome. Thus efforts to develop animal models of irritable bowel syndrome have centred on both of these parameters. The anticonvulsant gabapentin, which is widely used as an analgesic agent, also reduces anxiety. ⋯ These results show that whilst both models have similar responses to gabapentin in terms of visceral pain they differ in terms of their physiological response to stress. This indicates that the origin of anxiety and perhaps then visceral hypersensitivity differs in these models. Overall, these data suggest that gabapentin may be a useful treatment in disorders of co-morbid pain and an overactive stress system such as irritable bowel syndrome.
-
Perinatal hypoxia-ischemia brain injury is a major cause of mortality and morbidity in neonates and lacks an effective treatment thus far. Carnosine has been demonstrated to play a neuroprotective role in the adult brain injuries. However, there is no information available concerning its neuroprotective role in the immature brains after hypoxia-ischemia insults. ⋯ Carnosine also inhibited mRNA expression of apoptosis-inducing factor(AIF) and caspase-3, which was accompanied by an increase in superoxide dismutase(SOD)activity and a decrease in the malondialdehyde(MDA)level in carnosine-treated rats. Furthermore, carnosine also improved the spatial learning and memory abilities of rats declined due to hypoxia-ischemia. These results demonstrate that carnosine can protect rats against hypoxia-ischemia-induced brain damage by antioxidation.
-
Transient receptor potential ankyrin 1 (TRPA1) is a non-selective, calcium permeable cation channel expressed by a subpopulation of primary afferent nociceptive nerve fibers. On peripheral nerve endings, TRPA1 channel contributes to transduction of chemical and physical stimuli, whereas on the central endings in the spinal dorsal horn, which is the topic of this brief review, it regulates glutamatergic transmission. ⋯ The spinal TRPA1 channel provides a promising target for development of a selective disease-modifying therapy for central pain hypersensitivity. Blockade of the spinal TRPA1 channel-mediated regulation of transmission may also attenuate cutaneous neurogenic inflammation.
-
Neuropathic pain is a clinical condition which remains poorly treated and combinations of pregabalin, an antagonist of the α2δ-subunit of Ca(2+) channels, with tapentadol, a μ-opioid receptor agonist/noradrenaline reuptake inhibitor, or with classical opioids such as oxycodone and morphine might offer increased therapeutic potential. In the rat spinal nerve ligation model, a dose dependent increase in ipsilateral paw withdrawal thresholds was obtained using an electronic von Frey filament after IV administration of pregabalin (1-10mg/kg), tapentadol (0.316-10mg/kg), morphine (1-4.64 mg/kg) and oxycodone (0.316-3.16 mg/kg), with ED(50) values (maximal efficacy) of 4.21 (67%), 1.65 (94%), 1.70 (96%) and 0.63 mg/kg (100%), respectively. ⋯ There was no increase in contralateral paw withdrawal thresholds and no locomotor impairment, as measured in the open field, for the combination of pregabalin and tapentadol; while a significant increase and impairment was demonstrated for the combinations of pregabalin and either morphine or oxycodone. Because combination of pregabalin and tapentadol resulted in a synergistic antihypersensitive activity, it is suggested that, beside the use of either drug alone, this drug combination may offer a beneficial treatment option for neuropathic pain.
-
The potent sedative-hypnotic zolpidem and the convulsant methyl-6,7-dimethoxy-4-ethyl-β-carboline-3-carboxylate (DMCM) act primarily by binding to the benzodiazepine site of the main inhibitory neurotransmitter receptor, the pentameric γ-aminobutyric acid type A receptor (GABA(A)). This binding depends critically on the wild-type F77 residue of the GABA(A) receptor γ2 subunit. Mice with γ2 subunit F77I point mutation (γ2I77 mouse line) lose the high-affinity nanomolar binding of these ligands as well as their most robust behavioral actions at low doses. ⋯ In behavioral tests, a high dose (20mg/kg) of DMCM was sedative and modulated fear learning. DMCM, but not zolpidem, acted as an agonist in recombinant GABA(A) α1/6β3 receptors studied using ligand binding and electrophysiological assays. Our results highlight the less well-known actions of high doses of DMCM and zolpidem that are not mediated via the γ2 subunit-containing benzodiazepine site of the GABA(A) receptor.