Accident; analysis and prevention
-
Pedestrian safety has become one of the most important issues in the field of traffic safety. This study aims at investigating the association between pedestrian crash frequency and various predictor variables including roadway, socio-economic, and land-use features. The relationships were modeled using the data from 263 Traffic Analysis Zones (TAZs) within the urban area of Shanghai - the largest city in China. ⋯ Pedestrian crashes were higher in TAZs with medium land use intensity than in TAZs with low and high land use intensity. Thus, higher priority should be given to TAZs with medium land use intensity to improve pedestrian safety. Overall, these findings can help transportation planners and managers understand the characteristics of pedestrian crashes and improve pedestrian safety.
-
Rural non-interstate crashes induce a significant amount of severe injuries and fatalities. Examination of such injury patterns and the associated contributing factors is of practical importance. Taking into account the ordinal nature of injury severity levels and the hierarchical feature of crash data, this study employs a hierarchical ordered logit model to examine the significant factors in predicting driver injury severities in rural non-interstate crashes based on two-year New Mexico crash records. ⋯ Factors such as road segments far from intersection, wet road surface condition, collision with animals, heavy vehicle drivers, male drivers and driver seatbelt used tend to induce less severe driver injury outcomes than the factors such as multiple-vehicle crashes, severe vehicle damage in a crash, motorcyclists, females, senior drivers, driver with alcohol or drug impairment, and other major collision types. Research limitations regarding crash data and model assumptions are also discussed. Overall, this research provides reasonable results and insight in developing effective road safety measures for crash injury severity reduction and prevention.
-
In the United States, 683 people were killed and an estimated 133,000 were injured in crashes due to running red lights in 2012. To help prevent/mitigate crashes caused by running red lights, these violations need to be identified before they occur, so both the road users (i.e., drivers, pedestrians, etc.) in potential danger and the infrastructure can be notified and actions can be taken accordingly. Two different data sets were used to assess the feasibility of developing red-light running (RLR) violation prediction models: (1) observational data and (2) driver simulator data. ⋯ TTI, DTI, the required deceleration parameter (RDP), and velocity at the onset of a yellow indication were among the most important factors identified by both models constructed using observational data and simulator data. Furthermore, in addition to the factors obtained from a point in time (i.e., yellow onset), valuable information suitable for RLR violation prediction was obtained from defined monitoring periods. It was found that period lengths of 2-6m contributed to the best model performance.
-
Pedestrians are the most vulnerable road users, and pedestrian safety has become a major research focus in recent years. Regarding the quality and quantity issues with collision data, conflict analysis using surrogate safety measures has become a useful method to study pedestrian safety. However, given the inequality between pedestrians and vehicles in encounters and the multiple interactions between pedestrians and vehicles, it is insufficient to simply use the same indicator(s) or the same way to aggregate indicators for all conditions. ⋯ Therefore, it is recommended either to use specific conflict indicators or to use weighted indicator aggregation for each interaction pattern when evaluating pedestrian safety. The implementation has been carried out at the fourth crosswalk, and the results indicate that the proposed method can achieve a higher accuracy and better robustness than conventional methods. Furthermore, the method is helpful for better understanding underlying levels of safety from the behavioral perspective, which can also provide evidence for targeted traffic education on proper behaviors.
-
Motorcyclists are particularly vulnerable to injury in crashes with heavy vehicles due to substantial differences in vehicle mass, the degree of protection and speed. There is a considerable difference in height between motorcycles and trucks; motorcycles are viewed by truck drivers from downward angles, and shorter distances between them mean steeper downward angles. Hence, we anticipated that the effects of motorcycle conspicuity treatments would be different for truck drivers. ⋯ The results show that the detection rate and the identification of a motorcyclist wearing a black helmet with a reflective sticker increases as the distance between the motorcycle and the truck decreases. We also found that a motorcyclist wearing a white helmet and a white outfit is more identifiable and detectable at both shorter and longer distances. In conclusion, although this study provides evidence that the use of appropriate conspicuity treatments enhances motorcycle conspicuity to truck drivers, we suggest that more attention should be paid to the effect of background environment on motorcycle conspicuity.