Accident; analysis and prevention
-
Motor vehicle crashes are the leading cause of maternal injury-related mortality during pregnancy in the United States, yet pregnant women remain an understudied population in motor vehicle safety research. ⋯ NC has a relatively high pregnant driver crash risk among the four U.S. states that have linked vital records and crash reports to examine pregnancy-associated crashes. Crash risks were especially elevated among pregnant women who were young, non-Hispanic black, unmarried, or used tobacco. Additional research is needed to quantify pregnant women's driving frequency and patterns.
-
Although past research has linked alcohol outlet density to higher rates of drinking and many related social problems, there is conflicting evidence of density's association with traffic crashes. An abundance of local alcohol outlets simultaneously encourages drinking and reduces driving distances required to obtain alcohol, leading to an indeterminate expected impact on alcohol-involved crash risk. This study separately investigates the effects of outlet density on (1) the risk of injury crashes relative to population and (2) the likelihood that any given crash is alcohol-involved, as indicated by police reports and single-vehicle nighttime status of crashes. ⋯ Off-premise outlet density is negatively associated with risks of both crashes and alcohol involvement, while the presence of a tribal casino in a ZIP code is linked to higher odds of police-reported drinking involvement. Alcohol outlets in a given area are found to influence crash risks both locally and in adjacent ZIP codes, and significant spatial autocorrelation also suggests important relationships across geographical units. These results suggest that each type of alcohol outlet can have differing impacts on risks of crashing as well as the alcohol involvement of those crashes.
-
Motor vehicle crashes involving civilian and emergency vehicles (EVs) have been a known problem that contributes to fatal and nonfatal injuries; however, characteristics associated with civilian drivers have not been examined adequately. This study used data from The National Highway Traffic Safety Administration's Fatality Analysis Reporting System and the National Automotive Sampling System General Estimates System to identify driver, roadway, environmental, and crash factors, and consequences for civilian drivers involved in fatal and nonfatal crashes with in-use and in-transport EVs. In general, drivers involved in emergency-civilian crashes (ECCs) were more often driving: straight through intersections (vs. same direction) of four-points or more (vs. not at intersection); where traffic signals were present (vs. no traffic control device); and at night (vs. midday). ⋯ Consequences included increased risk of injury (vs. no injury) and receiving traffic violations (vs. no violation). Fatal ECCs were associated with driving on urban roads (vs. rural), although these types of crashes were less likely to occur on dark roads (vs. daylight). The findings of this study suggest drivers may have difficulties in visually detecting EVs in different environments.
-
Motivational models of driving behaviour agree that choice of speed is modulated by drivers' goals. Whilst it is accepted that some goals favour fast driving and others favour safe driving, little is known about the interplay of these conflicting goals. In the present study, two aspects of this interplay are investigated: the balance of conflict and the strength of conflict. ⋯ The lack of evidence for the balance of conflict playing a role suggests that in each condition, participants subjectively weighted the loss higher than the gain (loss aversion). It is concluded that the interplay of the subjective values that drivers attribute to objective incentives for fast and safe driving is a promising field for future research. Incorporating this knowledge into motivational theories of driving behaviour might improve their contribution to the design of adequate road safety measures.
-
For many years, to reduce the crash frequency and severity at high-speed signalized intersections, warning flashers have been used to alert drivers of potential traffic-signal changes. Recently, more aggressive countermeasures at such intersections include a speed-limit reduction in addition to warning flashers. While such speed-control strategies have the potential to further improve the crash-mitigation effectiveness of warning flashers, a rigorous statistical analysis of crash data from such intersections has not been undertaken to date. ⋯ It is speculated that, in the presence of potentially heterogeneous driver responses to decreased speed limits, the smaller distances covered during reaction time at lower speeds (allowing a higher likelihood of crash avoidance) and the reduced energy of crashes associated with lower speed limits are not necessarily sufficient to unambiguously decrease the frequency and severity of crashes when the speed-limit reduction is just 5 mi/h. However, they are sufficient to unambiguously decrease the frequency and severity of crashes when the speed-limit reduction is 10 mi/h. Based on this research, speed-limit reductions in conjunction with signal-warning flashers appear to be an effective safety countermeasure, but only clearly so if the speed-limit reduction is at least 10 mi/h.