Journal of safety research
-
In this paper, we present machine learning techniques to analyze pedestrian and bicycle crash by developing macro-level crash prediction models. ⋯ The DTR models uncovered the most significant predictor variables for both response variables (pedestrian and bicycle crash counts) in terms of three broad categories: traffic, roadway, and socio-demographic characteristics. Additionally, spatial predictor variables of neighboring STAZs were considered along with the targeted STAZ in both DTR models. The DTR model considering spatial predictor variables (spatial DTR model) were compared without considering spatial predictor variables (aspatial DTR model) and the model comparison results discovered that the prediction accuracy of the spatial DTR model performed better than the aspatial DTR model. Finally, the current research effort contributed to the safety literature by applying some ensemble techniques (i.e. bagging, random forest, and gradient boosting) in order to improve the prediction accuracy of the DTR models (weak learner) for macro-level crash count. The study revealed that all the ensemble techniques performed slightly better than the DTR model and the gradient boosting technique outperformed other competing ensemble techniques in macro-level crash prediction models.
-
Drivers' collision avoidance performance in an impending collision situation plays a decisive role for safety outcomes. This study explored drivers' collision avoidance performances in three typical collision scenarios that were right-angle collision, head-on collision, and collision with pedestrian. ⋯ Long brake reaction time and wrong swerve direction were the main factors leading to a high collision likelihood. The swerve-toward-conflict maneuver caused a delay in brake action and degraded subsequent braking performances. The prevalent phenomenon indicated that drivers tended to use an intuitive (heuristic) way to make decisions in critical traffic situations. Practical applications: The study generated a better understanding of collision development and shed lights on the design of future advanced collision avoidance systems for semi-automated vehicles. Manufactures should also engage more efforts in developing active steering assistance systems to assist drivers in collision avoidance.