Seminars in nuclear medicine
-
Review Case Reports
Neuroimaging in cerebrovascular disorders: measurement of cerebral physiology after stroke and assessment of stroke recovery.
Nuclear medicine imaging can play an important role in the diagnosis of stroke risk, the differential diagnosis of vascular and parenchymal cerebral abnormalities, and the understanding and management of poststroke recovery. Radionuclide brain-imaging methods can assess hemodynamic, vascular, and metabolic status before and after stroke. Several techniques, including vasodilatory stress imaging with regional cerebral blood flow (rCBF) single-photon emission computed tomography (SPECT), oxygen extraction methods with positron emission tomography (PET), and spectroscopic imaging with magnetic resonance spectroscopic imaging, offer ways to distinguish vascular from parenchymal dysfunction and to determine whether any observed abnormalities in cerebral blood flow are primary or secondary disease manifestations. ⋯ The phosphocreatine-adenosine triphosphate ratio was highly correlated (r = 0.88, P <.05) with increasing (18)F-fluorodeoxyglucose uptake. These results showed that there is a parallel change in glucose metabolism and high-energy phosphate metabolism associated with poststroke recovery that is proposed to be due to cerebral reorganization in the contralateral premotor cortex. The value of these results on rehabilitation strategy, including possible criteria for the use of facilitatory versus compensatory approaches, is analyzed.