European journal of immunology
-
Phosphoinositide 3-kinases (PI3K) are known to regulate Toll-like receptor (TLR)-mediated inflammatory responses, but their impact on the different pathways of TLR signaling remains to be clarified. Here, we investigated the consequences of pharmacological inhibition of PI3K on Toll-IL-1 receptor domain-containing adapter-inducing IFN-beta (TRIF)-dependent signaling, which induces IFN-beta gene expression downstream of TLR3 and TLR4. First, treatment of monocyte-derived dendritic cells (DC) with wortmannin or LY294002 was found to enhance IFN-beta expression upon TLR3 or TLR4 engagement. ⋯ Furthermore, wortmannin enhanced NF-kappaB activity induced by TRIF overexpression in HEK 293T cells, while overexpression of catalytically active PI3K selectively attenuated TRIF-mediated NF-kappaB transcriptional activity. Finally, in co-immunoprecipitation experiments, we showed that PI3K physically interacted with TRIF. We conclude that inhibition of PI3K activity enhances TRIF-dependent NF-kappaB activity, and thereby increases IFN-beta synthesis elicited by TLR3 or TLR4 ligands.
-
Recombination-activating gene (RAG)1 and RAG2 encode T and B lymphocyte-specific endonucleases indispensable for rearrangements of antigen-receptor gene segments but also capable of causing deleterious chromosome rearrangements. The mechanisms regulating RAG expression and repression are not clear. ⋯ We also show that in all other cells NWC is controlled by the RAG2 intragenic promoter, which in immature and mature T and B lymphocytes is silent. The possible implications of these findings for understanding the activation and inactivation of RAG genes in lymphocytes and their repression in other cells are discussed.