European journal of immunology
-
The recent outbreak of coronavirus disease 2019 (COVID-19), triggered by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses an enormous threat to global public health and economies. Human coronaviruses normally cause no or mild respiratory disease but in the past two decades, potentially fatal coronavirus infections have emerged, causing respiratory tract illnesses such as pneumonia and bronchitis. These include severe acute respiratory syndrome coronavirus (SARS-CoV), followed by the Middle East respiratory syndrome coronavirus (MERS-CoV), and recently the SARS-CoV-2 coronavirus outbreak that emerged in Wuhan, China, in December 2019. ⋯ Since it will be some time until a safe and effective vaccine will be available, the immediate priority is to harness innate immunity to accelerate early antiviral immune responses. Second, since excessive inflammation is a major cause of pathology, targeted anti-inflammatory responses are being evaluated to reduce inflammation-induced damage to the respiratory tract and cytokine storms. Here, we highlight prominent immunotherapies at various stages of development that aim for augmented anti-coronavirus immunity and reduction of pathological inflammation.
-
Vaccine development against SARS-CoV-2 has drawn attention around the globe due to the exploding pandemic. Although COVID-19 is caused by a new coronavirus, SARS-CoV-2, previous research on other coronavirus vaccines, such as FIPV, SARS, and MERS, has provided valuable information for the rapid development of COVID-19 vaccine. ⋯ Since the beginning of the outbreak, the research progress on COVID-19 has been remarkable. We are therefore optimistic about the rapid development of COVID-19 vaccine.
-
Myeloid-derived suppressor cells (MDSCs) are key regulators of immunity that initially have been defined by their ability to potently suppress T-cell responses. Recent studies collectively demonstrate that the suppressive activity of MDSCs is not limited to T cells, but rather affects a broad range of immune cell subsets. However, relatively few studies have assessed the impact of MDSCs on B cells, particularly in the human context. ⋯ M-MDSCs induced the downregulation of key surface markers on activated B cells, including IgM, HLA-DR, CD80, CD86, TACI, and CD95. Concurrently, M-MDSCs but not conventional monocytes elicited alterations in the transcription of genes involved in apoptosis induction, class-switch regulation, and B-cell differentiation and function. In summary, this study expands our understanding of the regulatory role of M-MDSCs for human B-cell responses.
-
Infection of mice with the gastrointestinal helminth Nippostrongylus brasiliensis elicits profound local proliferation and accumulation of type 2 innate lymphoid cells (ILC2s) in the lung. The regulation of ILC2 proliferation and accumulation in the lung is poorly understood. Using T cell-specific IL-4/IL-13-deficient mice, we demonstrate that IL-4/IL-13 secretion from Th2 cells promotes proliferation and expansion of the ILC2 population in the lung of N. brasiliensis-infected mice. ⋯ In addition, expression of a constitutively active form of STAT6 in ILC2s was sufficient to promote their proliferation in uninfected mice. The expression of MHC class II in ILC2s appeared to be enhanced by STAT6 signaling supporting the concept that Th2 cells and ILC2s can communicate in an antigen-dependent manner resulting in a Th2-regulated accumulation of ILC2s in the lung during an acute type 2 immune response. Based on our observations, targeting the STAT6 pathway in ILC2s could help to develop new treatments to dampen ILC2 proliferation in the lung and thereby ameliorate ILC2-mediated allergic inflammation.
-
CD8 T cells acquire cytotoxic molecules including granzyme B during effector differentiation. Both tissue-resident memory CD8 T cells (Trm) and circulating CD45RA+ effector-type T cells (Temra) cells have the ability to retain granzyme B protein expression into the memory phase, but it is unclear how this persistence of cytolytic activity is regulated during steady state. Previously, we have described that the transcriptional regulators Hobit and Blimp-1 have overlapping target genes that include granzyme B, but their impact on the regulation of cytotoxicity in Trm and Temra cells during homeostasis has remained unclear. ⋯ In contrast, Hobit mRNA and protein expression was stably maintained during quiescence, but downregulated after activation. Notably, Blimp-1 was required for expression of granzyme B in murine effector T cells and Trm, while Hobit specifically regulated granzyme B in murine Trm during the memory phase. These findings suggest that Blimp-1 initiates cytotoxic effector function and that Hobit maintains cytotoxicity in a deployment-ready modus in Trm.