Anesthesiology
-
Central venous infusion of cold fluid may be a useful method of inducing therapeutic hypothermia. The aim of this study was to quantify systemic heat balance and regional distribution of body heat during and after central infusion of cold fluid. ⋯ Central venous infusion of cold fluid decreases core temperature more than would be expected were the reduction in body heat content proportionately distributed. It thus appears to be an effective method of rapidly inducing therapeutic hypothermia. When the infusion is complete, there is a spontaneous partial recovery in core temperature that facilitates rewarming to normothermia.
-
Randomized Controlled Trial Clinical Trial
Sedation during spinal anesthesia.
Central neuraxial anesthesia has been reported to decrease the dose of both intravenous and inhalational anesthetics needed to reach a defined level of sedation. The mechanism behind this phenomenon is speculated to be decreased afferent stimulation of the reticular activating system. The authors performed a two-part study (nonrandomized pilot study and a subsequent randomized, double-blind, placebo-controlled study) using the Bispectral Index (BIS) monitor to quantify the degree of sedation in unmedicated volunteers undergoing spinal anesthesia. ⋯ Spinal anesthesia is accompanied by significant sedation progressively when compared with controls as measured by OAA/S and self-sedation scores. This effect was not related to block height. The late sedation observed by OAA/S at 60 min may indicate a second mechanism of sedation, such as delayed rostral spread of local anesthetics. BIS was not a sensitive measure of the sedation associated with spinal anesthesia in the randomized, blinded portion of this study.
-
Comparative Study
Temporal relation between acoustic and force responses at the adductor pollicis during nondepolarizing neuromuscular block.
Contracting muscle emits sounds. The purpose of this study was to compare the time course of muscular paralysis at the adductor pollicis muscle (AP) with use of acoustic myography and mechanomyography. ⋯ Acoustic myography is an alternative method to monitor muscular paralysis that is easy to set up and applicable to most superficial muscles. However, the time course of relaxation at AP using acoustic myography differs from the time course of force relaxation. Therefore, these two methods are not equivalent when applied to AP.
-
Chiral local anesthetics, such as ropivacaine and levobupivacaine, have the potential advantage over racemic mixtures in showing reduced toxic side effects. However, these S-(levo, or "-")isomers also have reportedly lower potency than their optical antipode, possibly resulting in no advantage in therapeutic index. Potency for local anesthetics inhibiting Na+ channels or action potentials depends on the pattern of membrane potential and so also does the stereopotency ratio. Here the authors have quantitated the stereopotencies of R-, S-, and racemic bupivacaine, comparing several in vitro assays of neuronal Na+ channels with those from in vivo functional nerve block, to establish relative potencies and to understand better the role of different modes of channel inhibition in overall functional anesthesia. ⋯ Although the in vitro actions of bupivacaine showed stereoselectivity ratios of 1.3-3:1 (R:S), in vivo nerve block at clinically used concentrations showed much smaller ratios for peak effect and no significant enantioselectivity for duration. A primary role for the blockade of resting rather than open or inactivated Na+ channels may explain the modest stereoselectivity in vivo, although stereoselective factors controlling local disposition cannot be ruled out. Levo-(S-)bupivacaine is effectively equipotent to R- or racemic bupivacaine in vivo for rat sciatic nerve block.
-
Previous studies reported that thoracic epidural anesthesia (TEA) protected against a decrease in gastric intramucosal pH, suggesting that TEA increased gut mucosal perfusion. The current study examines the effects of TEA on ileal mucosa using intravital microscopy in anesthetized rats. ⋯ Thoracic epidural anesthesia increased gut mucosal blood flow and reduced intermittent flow in the villus microcirculation in the presence of a decreased perfusion pressure.