Anesthesiology
-
To simulate the time course of drug effect, it is sometimes necessary to combine the pharmacodynamic parameters from an integrated pharmacodynamic-pharmacodynamic study (e.g., volumes, clearances, k(e0) [the effect site equilibration rate constant], C(50) [the steady state plasma concentration associated with 50% maximum effect], and the Hill coefficient) with pharmacokinetic parameters from a different study (e.g., a study examining a different age group or sampling over longer periods of time). Pharmacokinetic-pharmacodynamic parameters form an interlocked vector that describes the relationship between input (dose) and output (effect). Unintended consequences may result if individual elements of this vector (e.g., k(e0)) are combined with pharmacokinetic parameters from a different study. The authors propose an alternative methodology to rationally combine the results of separate pharmacokinetic and pharmacodynamic studies, based on t(peak), the time of peak effect after bolus injection. ⋯ T(peak) is a useful pharmacodynamic parameter and can be used to link separate pharmacokinetic and pharmacodynamic studies. This addresses a common difficulty in clinical pharmacology simulation and control problems, where there is usually a wide choice of pharmacokinetic models but only one or two published pharmacokinetic-pharmacodynamic models. The results will be immediately applicable to target-controlled anesthetic infusion systems, where linkage of separate pharmacokinetic and pharmacodynamic parameters into a single model is inherent in several target-controlled infusion designs.
-
Clinical Trial
Evaluation of the lateral modified approach for continuous interscalene block after shoulder surgery.
Continuous interscalene block is the technique of choice for postoperative pain relief treatment after shoulder surgery. The authors prospectively evaluated the modified lateral approach for the performance of the interscalene catheter block and monitored 700 patients for clinical efficacy and complications during the first 6 months after placement of the catheter. ⋯ The lateral modified approach provides good conditions for placement of the interscalene catheter. Anesthesia and analgesia performed through the catheter are efficient. The rates of infection and neurologic complications are low, and patient satisfaction is high.
-
Propofol is a common sedative hypnotic for the induction and maintenance of anesthesia. Clinicians typically moderate the dose of propofol or choose a different sedative hypnotic in the setting of severe intravascular volume depletion. Previous work has established that hemorrhagic shock influences both the pharmacokinetics and pharmacodynamics of propofol in the rat. To investigate this further, the authors studied the influence of hemorrhagic shock on the pharmacology of propofol in a swine isobaric hemorrhage model. ⋯ Hemorrhagic shock altered the pharmacokinetics and pharmacodynamics of propofol. Changes in intercompartmental clearances and an increase in the potency of propofol suggest that less propofol would be required to achieve a desired drug effect during hemorrhagic shock.
-
Experimental and clinical studies have shown reduction in intrapulmonary shunt with improved oxygenation by spontaneous breathing with airway pressure release ventilation (APRV) in acute lung injury. The mechanisms of these findings are not clear. The authors hypothesized that spontaneous breathing results in better aeration of lung tissue and that improvement in oxygenation can be explained by these changes. This hypothesis was studied in a porcine model of oleic acid-induced lung injury. ⋯ The results support the hypothesis that spontaneous breathing during APRV improves oxygenation mainly by recruitment of nonaerated lung and improved aeration of the lungs.