Anesthesiology
-
Randomized Controlled Trial Clinical Trial
Recruitment maneuvers after a positive end-expiratory pressure trial do not induce sustained effects in early adult respiratory distress syndrome.
Recruitment maneuvers performed in early adult respiratory distress syndrome remain a matter of dispute in patients ventilated with low tidal volumes and high levels of positive end-expiratory pressure (PEEP). In this prospective, randomized controlled study the authors evaluated the impact of recruitment maneuvers after a PEEP trial on oxygenation and venous admixture (Qs/Qt) in patients with early extrapulmonary adult respiratory distress syndrome. ⋯ In patients with early extrapulmonary adult respiratory distress syndrome who underwent a PEEP trial, recruitment maneuvers failed to induce a sustained improvement of oxygenation and venous admixture.
-
Previous work has demonstrated that ongoing hemorrhagic shock dramatically alters the distribution, clearance, and potency of propofol. Whether volume resuscitation after hemorrhagic shock restores drug behavior to baseline pharmacokinetics and pharmacodynamics remains unclear. This is particularly relevant because patients suffering from hemorrhagic shock are typically resuscitated before surgery. To investigate this, the authors studied the influence of an isobaric bleed followed by crystalloid resuscitation on the pharmacokinetics and pharmacodynamics of propofol in a swine model. The hypothesis was that hemorrhagic shock followed by resuscitation would not significantly alter the pharmacokinetics but would influence the pharmacodynamics of propofol. ⋯ Hemorrhagic shock followed by resuscitation with lactated Ringer's solution did not alter the pharmacokinetics but did increase the potency of propofol. These results demonstrate that alterations in propofol pharmacokinetics observed in moderate to severe blood loss can be reversed with resuscitation. These results suggest that a modest reduction in propofol is prudent to achieve a desired drug effect after resuscitation from severe hemorrhagic shock.
-
Randomized Controlled Trial Comparative Study Clinical Trial
Comparative analgesic and mental effects of increasing plasma concentrations of dexmedetomidine and alfentanil in humans.
In animals, systemic and intrathecal administration of the alpha2 -adrenergic receptor agonist dexmedetomidine results in robust antinociceptive effects in models of heat pain. In humans, systemically administered dexmedetomidine is approved for sedating patients in the intensive care unit. However, whether systemic administration of dexmedetomidine in humans produces significant analgesia at doses causing sedation but not unconsciousness remains controversial. ⋯ This study documents that systemic dexmedetomidine lacks analgesic efficacy for heat and electrical pain at doses causing mild to severe sedation. These results provide further evidence suggesting that systemic administration of dexmedetomidine lacks broad analgesic activity in models of acute pain at doses not rendering humans unconscious.
-
Comparative Study Clinical Trial
Comparative pharmacokinetics and pharmacodynamics of the new propofol prodrug GPI 15715 and propofol emulsion.
GPI 15715 is a new water-soluble prodrug that is hydrolyzed to release propofol. The objectives of this crossover study in volunteers were to investigate the pharmacokinetics and pharmacodynamics of GPI 15715 in comparison with propofol emulsion. ⋯ Compared with propofol emulsion, propofol from GPI 15715 showed different pharmacokinetics and pharmacodynamics, particularly a higher potency with respect to concentration. These differences may indicate an influence of the formulation.
-
Rapid flushing of radial artery catheters may result in retrograde embolization of air into the cerebral circulation. This study examined the incidence of central air embolization during and after flushing of an arterial pressure monitoring system. ⋯ Retrograde air embolization is a rare event after routine radial artery catheter flushing in adult patients with stable hemodynamic conditions.