Anesthesiology
-
Propofol is a potent lipophilic anesthetic that was initially formulated in Cremophor El for human use. Because of the occurrence of Cremophor EL anaphylaxis and improvements in the quality of lipid emulsions, it was ultimately brought to market as 1% propofol formulated in 10% soybean oil emulsion. ⋯ Efforts to overcome such drawbacks have involved the development of propofol emulsions with altered propofol and lipid contents, the addition of different excipients to emulsions for antimicrobial activity, and study of nonemulsion formulations including propofol-cyclodextrin and propofol-polymeric micelle formulations. In addition, a number of propofol prodrugs have been made and evaluated.
-
Randomized Controlled Trial
First human exposure of Org 25969, a novel agent to reverse the action of rocuronium bromide.
Acetylcholinesterase inhibitors are widely used for the reversal of neuromuscular blocking agents. However, acetylcholinesterase inhibitors have several side effects and are not effective during profound block. Org 25969 is a modified gamma-cyclodextrin that encapsulates the neuromuscular blocking agent, rocuronium bromide (Esmeron/Zemuron, NV Organon, Oss, The Netherlands), forming a tightly bound complex with an association constant of approximately 10 m. Chemical encapsulation of rocuronium promotes dissociation of rocuronium from the acetylcholine receptor, thereby reversing the neuromuscular block without the side effects associated with acetylcholinesterase inhibitors. ⋯ Org 25969 was both well tolerated and effective in reversing neuromuscular block induced by rocuronium in 29 human volunteers.
-
Voltage-gated sodium channels comprise a family of closely related proteins, each subserving different physiologic and pathologic functions. NaV1.8 is an isoform of voltage-gated sodium channel implicated in the pathogenesis of inflammatory and neuropathic pain, but currently, there is no isoform-specific inhibitor of any voltage-gated sodium channels. The authors explored the possibility of short hairpin RNA-mediated selective knockdown of NaV1.8 expression. ⋯ A selective knockdown of NaV1.8 expression in dorsal root ganglion neurons can be attained by short hairpin RNA delivered with lentivirus. This method may provide a new gene therapy approach to controlling neuronal hyperexcitability and pathologic pain.
-
Lines of evidence have indicated that cyclooxygenase 2 plays a role in the pathophysiology of neuropathic pain. However, the site and mechanism of its action are still unclear. Spinal glia has also been reported to mediate pathologic pain states. The authors evaluated the effect of continuous intrathecal or systemic cyclooxygenase-2 inhibitor on the development and maintenance of neuropathic pain and glial activation in a spinal nerve ligation model of rats. ⋯ Spinal cyclooxygenase 2 mediates the development but not the maintenance of neuropathic pain and glial activation in rats. Peripheral cyclooxygenase 2 plays a part in the maintenance of neuropathic pain.