Anesthesiology
-
Randomized Controlled Trial
Electroencephalographic approximate entropy changes in healthy volunteers during remifentanil infusion.
The aim of this study was to investigate the independent effect of remifentanil on the approximate entropy (ApEn) in frontoparietal montages. The authors investigated which montages were relevant to assess the remifentanil effect on the electroencephalogram. Spectral edge frequency and the canonical univariate parameter were used as comparators. ⋯ Approximate entropy derived from a parietal montage is appropriate for the assessment of the remifentanil effect on the electroencephalogram.
-
Most in vitro neuroprotection studies with isoflurane have involved cells obtained during the embryonic or early postnatal period. However, in mature rodents, isoflurane neuroprotection does not persist. The authors determined whether neuroprotection of hippocampal slices with isoflurane decreases with aging and is due to decreased intracellular Ca regulation and survival protein phosphorylation. ⋯ Isoflurane neuroprotection of hippocampal slices during oxygen and glucose deprivation decreases with age. Isoflurane does not prevent large increases in intracellular Ca concentration during oxygen and glucose deprivation and does not induce the phosphorylation of the prosurvival proteins in aging slices. A protein kinase C-mediated increase in NMDAR activity may result in increased excitotoxicity and decreased neuroprotection by volatile anesthetics in the aging brain.
-
Myocardial protection by anesthetics is known to involve activation of protein kinase C (PKC). The authors' objective was to identify the PKC isoforms activated by propofol in rat ventricular myocytes. They also assessed the intracellular location of individual PKC isoforms before and after treatment with propofol. ⋯ These results demonstrate that propofol causes an increase in PKC activity in rat ventricular myocytes. Propofol stimulates translocation of PKC-alpha, PKC-delta, PKC-epsilon, and PKC-zeta to distinct intracellular sites in cardiomyocytes. This may be a fundamentally important cellular mechanism of anesthesia-induced myocardial protection in the setting of ischemia-reperfusion injury.