Anesthesiology
-
Cholinergic arousal system plays an important role in the maintenance of consciousness. The authors investigated whether the intrabasalis injection of orexin-A or orexin-B and the electrically stimulated pedunculopontine tegmentum nuclei (PPTg: the origin of cholinergic ascending pathways) may alter acetylcholine efflux and electroencephalographic activity in the somatosensory cortex in relation to the orexinergic system in isoflurane-anesthetized rats. ⋯ The authors demonstrated that orexin-A was more potent than orexin-B in producing alteration of cholinergic basal forebrain neuronal activity and that the cortical activation induced by the PPTg stimulation against isoflurane anesthesia may be mediated through the orexin-1 receptors in the basal forebrain.
-
Endotoxin causes acute lung injury, which can lead to acute respiratory distress syndrome. Because local anesthetics are known to attenuate inflammatory reactions, ropivacaine was tested for its possible antiinflammatory effect in lipopolysaccharide-induced lung injury in rat alveolar epithelial cells (AECs) and rat pulmonary artery endothelial cells (RPAECs) in vitro and in vivo. ⋯ Ropivacaine intervention substantially attenuated the inflammatory response in acute lung injury and thus may carry an interesting potential for antiinflammatory treatment.
-
Opioid-induced hyperalgesia (OIH) is a syndrome of increased sensitivity to noxious stimuli, seen after both the acute and chronic administration of opioids, that has been observed in humans and rodent models. This syndrome may reduce the clinical utility of opioids in treating acute and chronic pain. ⋯ Genetic variants of the beta2-AR gene seem to explain some part of the differences between various strains of mice to develop OIH. The association of this gene with OIH suggests specific pharmacologic strategies for reducing the impact of OIH on patients consuming opioids.
-
Editorial Comment
Perspectives on the genetic basis of opioid-induced hyperalgesia.
-
Postinfarct remodeled myocardium exhibits numerous structural and biochemical alterations. So far, it is unknown whether postconditioning elicited by volatile anesthetics can also provide protection in the remodeled myocardium. ⋯ Infarct-remodeled myocardium is receptive to protection by isoflurane postconditioning via protein kinase B/Akt signaling. This is the first time to demonstrate that anesthetic postconditioning retains its marked protection in diseased myocardium.