Anesthesiology
-
Biography Historical Article
John H. Eisenach, M.D., recipient of the 2008 Presidential Scholar Award.
-
Antioxidant anesthetics such as propofol (2,6-diisopropylphenol) directly inhibit lipid peroxidation via the generation of reactive oxygen species. Currently, there are no other studies regarding the direct effects of propofol medium chain triglyceride/long chain triglyceride (MCT/LCT) on reactive oxygen species generation or in experimental models of reactive oxygen species-induced oxidative stress in the brain. ⋯ The current data show that propofol, mixed with clinical reagents (propofol MCT/LCT), resulted in the down-regulation of high oxidative stress due to scavenging hydroxyl radical, as demonstrated by in vitro or in vivo electron spin resonance analysis. These results led to reduced levels of hydroxyl radical, formed by brain injury such as stroke, and may therefore provide advantages for neuroprotection during anesthesia for craniotomy, e.g., in cases of brain disease.
-
The major efforts to selectively deliver drugs to the brain in the past decade have relied on smart molecular techniques to penetrate the blood-brain barrier, whereas intraarterial drug delivery has drawn relatively little attention. Meanwhile, rapid progress has been made in the field of endovascular surgery. Modern endovascular procedures can permit highly targeted drug delivery by the intracarotid route. ⋯ Anecdotal data suggest that intracarotid drug delivery is effective in the treatment of cerebral vasospasm, thromboembolic strokes, and neoplasms. Neuroanesthesiologists are frequently involved in the care of such high-risk patients. Therefore, it is necessary to understand the applications of intracarotid drug delivery and the unusual kinetics of intracarotid drugs.
-
Intraneural injection during peripheral nerve blockade can cause neurologic injury. Current approaches to prevent or detect intraneural injection lack reliability and consistency, or only signal intraneural injection upon the event. A change in electrical impedance (EI) could be indicative of intraneural needle placement before injection. ⋯ With further study, EI could prove to be a quantifiable warning signal to alert clinicians to intraneural needle placement, preventing local anesthetic injection and subsequent nerve injury.
-
Malignant hyperthermia (MH) is a hypermetabolic condition caused by a genetic disposition leading to increased Ca release from the sarcoplasmic reticulum after exposure to triggering agents. In the authors' ongoing evaluation of patients undergoing MH testing in Austria, they detected a family with a new variant of the ryanodine receptor 1. Guidelines suggest that genetic tests are possible only for individuals from families in which the mutations are known. The aim of this study was to provide functional data that establish a potential link between this new variant and susceptibility to MH, and thus enable application in genetic tests. ⋯ These data document a role of the new W3985R variant in MH susceptibility.