Anesthesiology
-
Review
Prediction of postoperative pain: a systematic review of predictive experimental pain studies.
Quantitative testing of a patient's basal pain perception before surgery has the potential to be of clinical value if it can accurately predict the magnitude of pain and requirement of analgesics after surgery. This review includes 14 studies that have investigated the correlation between preoperative responses to experimental pain stimuli and clinical postoperative pain and demonstrates that the preoperative pain tests may predict 4-54% of the variance in postoperative pain experience depending on the stimulation methods and the test paradigm used. The predictive strength is much higher than previously reported for single factor analyses of demographics and psychologic factors. In addition, some of these studies indicate that an increase in preoperative pain sensitivity is associated with a high probability of development of sustained postsurgical pain.
-
Review
Prediction of postoperative pain: a systematic review of predictive experimental pain studies.
Quantitative testing of a patient's basal pain perception before surgery has the potential to be of clinical value if it can accurately predict the magnitude of pain and requirement of analgesics after surgery. This review includes 14 studies that have investigated the correlation between preoperative responses to experimental pain stimuli and clinical postoperative pain and demonstrates that the preoperative pain tests may predict 4-54% of the variance in postoperative pain experience depending on the stimulation methods and the test paradigm used. The predictive strength is much higher than previously reported for single factor analyses of demographics and psychologic factors. In addition, some of these studies indicate that an increase in preoperative pain sensitivity is associated with a high probability of development of sustained postsurgical pain.
-
Experimental research in cardiac and neuronal tissue has shown that besides volatile anesthetics and xenon, the nonanesthetic noble gas helium also reduces ischemia-reperfusion damage. Even though the distinct mechanisms of helium-induced organ protection are not completely unraveled, several signaling pathways have been identified. ⋯ Because of its favorable characteristics and the lack of hemodynamic side effects, helium is suitable for use also in critically ill patients. This review covers the cellular effects of helium, which may lead to new clinical strategies of tissue salvage in ischemia-reperfusion situations, both within and outside the perioperative setting.