Anesthesiology
-
The regulation of gene expression in nociceptive pathways contributes to the induction and maintenance of pain sensitization. Histone acetylation is a key epigenetic mechanism controlling chromatin structure and gene expression. Chemokine CC motif receptor 2 (CXCR2) is a proinflammatory receptor implicated in neuropathic and inflammatory pain and is known to be regulated by histone acetylation in some settings. The authors sought to investigate the role of histone acetylation on spinal CXCR2 signaling after incision. ⋯ Histone modification is an important epigenetic mechanism regulating incision-induced nociceptive sensitization. The spinal CXCR2 signaling pathway is one epigenetically regulated pathway controlling early and latent sensitization after incision.
-
Transcranial motor-evoked potentials (TcMEPs) monitor spinal cord motor tract integrity. Using a swine model, the authors studied the effects of vasodilatory hypotension, hemorrhage, and various resuscitation efforts on TcMEP responses. ⋯ Hypotension from hemorrhage, but not vasodilation, is associated with a decrease in TcMEP amplitude. After hemorrhage, restoration of TcMEPs with epinephrine but not phenylephrine indicates that CO and DO2 affect TcMEPs more than MAP. Monitoring CO may be beneficial in major spine surgery when using TcMEP monitoring.
-
It has been shown that γ-aminobutyric acid exerts excitatory actions on the immature brain due to the increased expression of Na(+)-K(+)-2Cl(-) cotransporter isoform 1. The authors sought to clarify whether midazolam, a γ-aminobutyric acid-mimetic hypnotic agent, causes neuronal excitation that can be blocked by bumetanide, a selective inhibitor of Na(+)-K(+)-2Cl(-) cotransporter isoform 1. Furthermore, the authors examined whether bumetanide potentiates the sedative effects of midazolam in neonatal rats. ⋯ These results suggest that γ-aminobutyric acid A receptor-mediated excitation plays an important role in attenuated sedative effects of midazolam in immature rats.
-
Mild brain hypothermia (32°-34°C) after human neonatal asphyxia improves neurodevelopmental outcomes. Astrocytes but not neurons have pyruvate carboxylase and an acetate uptake transporter. C nuclear magnetic resonance spectroscopy of rodent brain extracts after administering [1-C]glucose and [1,2-C]acetate can distinguish metabolic differences between glia and neurons, and tricarboxylic acid cycle entry via pyruvate dehydrogenase and pyruvate carboxylase. ⋯ Starting mild hypothermia simultaneously with oxygen-glucose deprivation, compared with delayed starting or no hypothermia, has higher pyruvate carboxylase throughput, suggesting that better glial integrity is one important neuroprotection mechanism of earlier hypothermia.
-
Human factors engineering has allowed a systematic approach to the evaluation of adverse events in a multitude of high-stake industries. This study sought to develop an initial methodology for identifying and classifying flow disruptions in the cardiac operating room (OR). ⋯ By using the detailed architectural diagrams, the authors were able to clearly demonstrate for the first time the unique role that OR design and equipment layout has on the generation of physical layout flow disruptions. Most importantly, the authors have developed a robust taxonomy to describe the flow disruptions encountered in a cardiac OR, which can be used for future research and patient safety improvements.