Anesthesiology
-
Xenon, the inert anesthetic gas, is neuroprotective in models of brain injury. The authors investigate the neuroprotective mechanisms of the inert gases such as xenon, argon, krypton, neon, and helium in an in vitro model of traumatic brain injury. ⋯ Xenon neuroprotection against traumatic brain injury can be reversed by increasing the glycine concentration, consistent with inhibition at the N-methyl-D-aspartate receptor glycine site playing a significant role in xenon neuroprotection. Argon and xenon do not act via the same mechanism.
-
Anesthetics mediate portions of their activity via modulation of the γ-aminobutyric acid receptor (GABAaR). Although its molecular structure remains unknown, significant progress has been made toward understanding its interactions with anesthetics via molecular modeling. ⋯ Consensus structural alignment based on homologous templates revealed an intersubunit anesthetic binding cavity within the transmembrane domain of the GABAaR, which showed a correlation of ligand docking scores with experimentally measured GABAaR potentiation.