Anesthesiology
-
Neuroimaging research has demonstrated definitive involvement of the central nervous system in the development, maintenance, and experience of chronic pain. Structural and functional neuroimaging has helped elucidate central nervous system contributors to chronic pain in humans. Neuroimaging of pain has provided a tool for increasing our understanding of how pharmacologic and psychologic therapies improve chronic pain. ⋯ Future advances in neuroimaging-based therapeutics (e.g., transcranial magnetic stimulation, real-time functional magnetic resonance imaging neurofeedback) may provide additional benefits for clinical practice. In the future, with standardization and validation, brain imaging could provide objective biomarkers of chronic pain, and guide treatment for personalized pain management. Similarly, brain-based biomarkers may provide an additional predictor of perioperative prognoses.
-
CW002 is an investigational nondepolarizing, neuromuscular blocking agent with a rapid onset and intermediate duration of action in animals. This is a single ascending dose, healthy subject study exploring tolerability, pharmacokinetics, and potency. ⋯ CW002 has predictable pharmacokinetics and is likely to have a rapid onset with an intermediate duration of action at 3× ED95. This model provides information to inform critical decisions (e.g., dose, study design) for continued development of CW002.
-
The authors hypothesized that low tidal volume (VT) would minimize ventilator-induced lung injury regardless of the degree of mechanical power. The authors investigated the impact of power, obtained by different combinations of VT and respiratory rate (RR), on ventilator-induced lung injury in experimental mild acute respiratory distress syndrome (ARDS). ⋯ In experimental mild ARDS, even at low VT, high mechanical power promoted ventilator-induced lung injury. To minimize ventilator-induced lung injury, low VT should be combined with low power.