Anesthesiology
-
Neurocognitive investigations suggest that conscious sensory perception depends on recurrent neuronal interactions among sensory, parietal, and frontal cortical regions, which are suppressed by general anesthetics. The purpose of this work was to investigate if local interactions in sensory cortex are also altered by anesthetics. The authors hypothesized that desflurane would reduce recurrent neuronal interactions in cortical layer-specific manner consistent with the anatomical disposition of feedforward and feedback pathways. ⋯ Desflurane anesthesia reduces neuronal interactions in visual cortex with a preferential effect on feedback. The findings suggest that neuronal disconnection occurs locally, among hierarchical sensory regions, which may contribute to global functional disconnection underlying anesthetic-induced unconsciousness.
-
Comment
Does Iso-mechanical Power Lead to Iso-lung Damage?: An Experimental Study in a Porcine Model.
Excessive tidal volume, respiratory rate, and positive end-expiratory pressure (PEEP) are all potential causes of ventilator-induced lung injury, and all contribute to a single variable: the mechanical power. The authors aimed to determine whether high tidal volume or high respiratory rate or high PEEP at iso-mechanical power produce similar or different ventilator-induced lung injury. ⋯ Different ventilatory strategies, delivered at iso-power, led to similar anatomical lung injury. The different systemic consequences of high PEEP underline that ventilator-induced lung injury must be evaluated in the context of the whole body.
-
The mechanisms underlying depression-associated pain remain poorly understood. Using a mouse model of depression, the authors hypothesized that the central amygdala-periaqueductal gray circuitry is involved in pathologic nociception associated with depressive states. ⋯ These findings indicate that the central amygdala-ventrolateral periaqueductal gray pathway may mediate some aspects of pain symptoms under depression conditions.