Anesthesiology
-
Randomized Controlled Trial
Botulinum Toxin Type A for Lumbar Sympathetic Ganglion Block in Complex Regional Pain Syndrome: A Randomized Trial.
The present study was designed to test the hypothesis that botulinum toxin would prolong the duration of a lumbar sympathetic block measured through a sustained increase in skin temperature. The authors performed a randomized, double-blind, controlled trial to investigate the clinical outcome of botulinum toxin type A for lumbar sympathetic ganglion block in patients with complex regional pain syndrome. ⋯ In patients with complex regional pain syndrome, lumbar sympathetic ganglion block using botulinum toxin type A increased the temperature of the affected foot for 3 months and also reduced the pain.
-
The dorsal root ganglion is widely recognized as a potential target to treat chronic pain. A fundamental understanding of quantitative molecular and genomic changes during the late phase of pain is therefore indispensable. The authors performed a systematic literature review on injury-induced pain in rodent dorsal root ganglions at minimally 3 weeks after injury. ⋯ Neuropeptide Y and galanin were found to be consistently upregulated on both the gene and protein levels. The current knowledge regarding molecular changes in the dorsal root ganglion during the late phase of pain is limited. General conclusions are difficult to draw, making it hard to select specific molecules as a focus for treatment.
-
Numerous pharmacokinetic models have been published aiming at more accurate and safer dosing of dexmedetomidine. The vast majority of the developed models underpredict the measured plasma concentrations with respect to the target concentration, especially at plasma concentrations higher than those used in the original studies. The aim of this article was to develop a dexmedetomidine pharmacokinetic model in healthy adults emphasizing linear versus nonlinear kinetics. ⋯ This study developed a nonlinear three-compartment pharmacokinetic model that accurately described dexmedetomidine plasma concentrations. Dexmedetomidine may be safely administered up to target-controlled infusion targets under 2 ng · ml-1 using the Hannivoort model, which assumed linear pharmacokinetics. Consideration should be taken during long-term administration and during an initial loading dose when following the dosing strategies of the current guidelines.