Anesthesiology
-
Centrifugation-based autotransfusion devices only salvage red blood cells while platelets are removed. The same™ device (Smart Autotransfusion for ME; i-SEP, France) is an innovative filtration-based autotransfusion device able to salvage both red blood cells and platelets. The authors tested the hypothesis that this new device could allow a red blood cell recovery exceeding 80% with a posttreatment hematocrit exceeding 40%, and would remove more than 90% of heparin and 75% of free hemoglobin. ⋯ In this first-in-human study, the same™ device was able to simultaneously recover and wash both platelets and red blood cells. Compared with preclinical evaluations, the device achieved a higher platelet recovery of 52% with minimal platelet activation while maintaining platelet ability to be activated in vitro.
-
Control of Breathing Using an Extracorporeal Membrane Lung. By T Kolobow, L Gattinoni, TA Tomlinson, JE Pierce. Anesthesiology 1977; 46:138-41. ⋯ A unique opportunity for research was the spontaneous birth of a network of scientists who became friends in the European Group of Research in Intensive Care Medicine. In this environment, it was possible to develop core concepts such as the "baby lung" and to understand the mechanisms underlying computed tomography-density redistribution in the prone position. Physiology guided us in the 1970s, and understanding mechanisms remains of paramount importance today.
-
Providing continuous health insurance coverage during the perinatal period may increase access to and utilization of labor neuraxial analgesia. This study tested the hypothesis that implementation of the 2010 Dependent Coverage Provision of the Patient Protection and Affordable Care Act, requiring private health insurers to allow young adults to remain on their parent's plan until age 26 yr, was associated with increased labor neuraxial analgesia use. ⋯ Implementation of the Dependent Coverage Provision was associated with a statistically significant increase in labor neuraxial analgesia use, but the small effect size is unlikely of clinical significance.
-
Superobesity and laparoscopic surgery promote negative end-expiratory transpulmonary pressure that causes atelectasis formation and impaired respiratory mechanics. The authors hypothesized that end-expiratory transpulmonary pressure differs between fixed and individualized positive end-expiratory pressure (PEEP) strategies and mediates their effects on respiratory mechanics, end-expiratory lung volume, gas exchange, and hemodynamic parameters in superobese patients. ⋯ In superobese patients undergoing laparoscopic surgery, individualized PEEPCompliance may provide a feasible compromise regarding end-expiratory transpulmonary pressures compared to PEEPEmpirical and PEEPTranspul, because PEEPCompliance with slightly negative end-expiratory transpulmonary pressures improved respiratory mechanics, lung volumes, and oxygenation while preserving cardiac output.