Anesthesiology
-
The utilization of artificial intelligence and machine learning as diagnostic and predictive tools in perioperative medicine holds great promise. Indeed, many studies have been performed in recent years to explore the potential. The purpose of this systematic review is to assess the current state of machine learning in perioperative medicine, its utility in prediction of complications and prognostication, and limitations related to bias and validation. ⋯ The findings indicate that the development of this field is still in its early stages. This systematic review indicates that application of machine learning in perioperative medicine is still at an early stage. While many studies suggest potential utility, several key challenges must be first overcome before their introduction into clinical practice.
-
Malignant hyperthermia (MH) susceptibility is a heritable musculoskeletal disorder that can present as a potentially fatal hypermetabolic response to triggering anesthesia agents. Genomic screening for variants in MH-associated genes RYR1 and CACNA1S provides an opportunity to prevent morbidity and mortality. There are limited outcomes data from disclosing variants in RYR1, the most common MH susceptibility gene, in unselected populations. The authors sought to identify the rate of MH features or fulminant episodes after triggering agent exposure in an unselected population undergoing genomic screening including actionable RYR1 variants. ⋯ Results demonstrate a low frequency of classic intraanesthetic hypermetabolic phenotypes in an unselected population with actionable RYR1 variants. Further research on the actionability of screening for MH susceptibility in unselected populations, including economic impact, predictors of MH episodes, and expanded clinical phenotypes, is necessary.
-
Propofol causes significant cardiovascular depression and a slowing of neurophysiological activity. However, literature on its effect on the heart rate remains mixed, and it is not known whether cortical slow waves are related to cardiac activity in propofol anesthesia. ⋯ The authors observed a robust increase in heart rate with increasing propofol concentrations in healthy volunteers and patients. This was likely due to decreased parasympathetic cardioinhibition. Similar to non-rapid eye movement sleep, cortical slow waves are coupled to the cardiac rhythm, perhaps due to a common brainstem generator.