Anesthesiology
-
Observational Study
Increasing levels of positive end-expiratory pressure cause stepwise biventricular stroke work reduction in a porcine model.
Positive end-expiratory pressure (PEEP) is commonly applied to avoid atelectasis and improve oxygenation in patients during general anesthesia but affects cardiac pressures, volumes, and loading conditions through cardiorespiratory interactions. PEEP may therefore alter stroke work, which is the area enclosed by the pressure-volume loop and corresponds to the external work performed by the ventricles to eject blood. The low-pressure right ventricle may be even more susceptible to PEEP than the left ventricle. The authors hypothesized that increasing levels of PEEP would reduce stroke work in both ventricles. ⋯ A stepwise increase in PEEP caused stepwise reduction in biventricular stroke work. However, there are important interventricular differences in response to increased PEEP levels. PEEP increased right ventricular afterload leading to uncoupling and right ventricular ejection fraction decline. These findings may support clinical decision-making to further optimize PEEP as a means to balance between improving lung ventilation and preserving right ventricular function.
-
Clinical Trial
Target controlled infusion of remimazolam in healthy volunteers shows some acute tolerance.
Remimazolam exhibits sedative properties by binding to γ-aminobutyric acid type A receptors. Remimazolam is administered as a bolus dose or continuous infusion, but has not been studied using target-controlled infusion (TCI). The study quantified the relationship between the remimazolam concentration, Modified Observer's Assessment of Alertness and Sedation (MOAAS) score, and bispectral index (BIS) using TCI. ⋯ In this study, it was shown that remimazolam-induced sedation is prone to tolerance development, which is potentially mediated by the CNS7054 concentration. The clinical consequences are, however, limited in situations where remimazolam is titrated to effect.
-
The efficiency of descending pain modulation, commonly assessed with the conditioned pain modulation procedure, is diminished in patients with chronic pain. The authors hypothesized that the efficiency of pain modulation is controlled by cortical opioid circuits. ⋯ Anterior cingulate cortex κ opioid receptor activation therefore diminishes descending control of nociception both in naive animals and as an adaptive response to chronic pain, likely by enhancing net descending facilitation. Descending control of nociception can be restored by activation of μ opioid receptors in the anterior cingulate cortex, but also by κ opioid receptor antagonists, providing a nonaddictive alternative to opioid analgesics. Navacaprant is now in advanced clinical trials.