Anesthesiology
-
Despite expanding use, knowledge on extracorporeal membrane oxygenation support during the COVID-19 pandemic remains limited. The objective was to report characteristics, management, and outcomes of patients receiving extracorporeal membrane oxygenation with a diagnosis of COVID-19 in France and to identify pre-extracorporeal membrane oxygenation factors associated with in-hospital mortality. A hypothesis of similar mortality rates and risk factors for COVID-19 and non-COVID-19 patients on venovenous extracorporeal membrane oxygenation was made. ⋯ In-hospital mortality was higher than recently reported, but nearly half of the patients survived. A high proportion of patients were cannulated by a mobile extracorporeal membrane oxygenation unit. Several factors associated with mortality were identified. Venovenous extracorporeal membrane oxygenation support should be considered early within the first week of mechanical ventilation initiation.
-
Pulse oximetry is ubiquitous in anesthesia and is generally a reliable noninvasive measure of arterial oxygen saturation. Concerns regarding the impact of skin pigmentation and race/ethnicity on the accuracy of pulse oximeter accuracy exist. The authors hypothesized a greater prevalence of occult hypoxemia (arterial oxygen saturation [Sao2] less than 88% despite oxygen saturation measured by pulse oximetry [Spo2] greater than 92%) in patients undergoing anesthesia who self-reported a race/ethnicity other than White. ⋯ Self-reported Black and Hispanic race/ethnicity are associated with a greater prevalence of intraoperative occult hypoxemia in the Spo2 range of 92 to 100% when compared with self-reported White race/ethnicity.
-
Randomized Controlled Trial
Early Restrictive Fluid Strategy Impairs the Diaphragm Force in Lambs with Acute Respiratory Distress Syndrome.
The effect of fluid management strategies in critical illness-associated diaphragm weakness are unknown. This study hypothesized that a liberal fluid strategy induces diaphragm muscle fiber edema, leading to reduction in diaphragmatic force generation in the early phase of experimental pediatric acute respiratory distress syndrome in lambs. ⋯ Early fluid restriction decreases the force-generating capacity of the diaphragm and diaphragmatic microcirculation in the acute phase of pediatric acute respiratory distress syndrome. In addition, the application of positive end-expiratory pressure decreases the force-generating capacity of the diaphragm in a dose-related way. These observations provide new insights into the mechanisms of critical illness-associated diaphragm weakness.
-
Strong spontaneous inspiratory efforts can be difficult to control and prohibit protective mechanical ventilation. Instead of using deep sedation and neuromuscular blockade, the authors hypothesized that perineural administration of lidocaine around the phrenic nerve would reduce tidal volume (VT) and peak transpulmonary pressure in spontaneously breathing patients with acute respiratory distress syndrome. ⋯ Phrenic nerve block is feasible, lasts around 12 h, and reduces VT and driving pressure without changing respiratory rate in patients under assisted ventilation.