Neuropsychologia
-
During adolescence the body undergoes many physical changes. These changes necessitate an updating of internal models of action. Here, we tested the hypothesis that internal models undergo refinement between adolescence and adulthood. ⋯ That it was only the correlation between imagined and executed actions that changed with age suggests that the developmental change was specific to generating accurate motor images and not a result of general cognitive improvement with age. The results support the notion that aspects of internal models are refined during adolescence. We suggest that this refinement may be facilitated by the development of parietal cortex during adolescence.
-
Neurophysiological evidence is described showing that some neurons in the macaque inferior temporal visual cortex have responses that are invariant with respect to the position, size and view of faces and objects, and that these neurons show rapid processing and rapid learning. Which face or object is present is encoded using a distributed representation in which each neuron conveys independent information in its firing rate, with little information evident in the relative time of firing of different neurons. This ensemble encoding has the advantages of maximising the information in the representation useful for discrimination between stimuli using a simple weighted sum of the neuronal firing by the receiving neurons, generalisation and graceful degradation. ⋯ These neurons thus provide important additional inputs to parts of the brain such as the orbitofrontal cortex and amygdala that are involved in social communication and emotional behaviour. Outputs of these systems reach the amygdala, in which face-selective neurons are found, and also the orbitofrontal cortex, in which some neurons are tuned to face identity and others to face expression. In humans, activation of the orbitofrontal cortex is found when a change of face expression acts as a social signal that behaviour should change; and damage to the orbitofrontal cortex can impair face and voice expression identification, and also the reversal of emotional behaviour that normally occurs when reinforcers are reversed.
-
Brain imaging studies in humans have shown that face processing in several areas is modulated by the affective significance of faces, particularly with fearful expressions, but also with other social signals such gaze direction. Here we review haemodynamic and electrical neuroimaging results indicating that activity in the face-selective fusiform cortex may be enhanced by emotional (fearful) expressions, without explicit voluntary control, and presumably through direct feedback connections from the amygdala. fMRI studies show that these increased responses in fusiform cortex to fearful faces are abolished by amygdala damage in the ipsilateral hemisphere, despite preserved effects of voluntary attention on fusiform; whereas emotional increases can still arise despite deficits in attention or awareness following parietal damage, and appear relatively unaffected by pharmacological increases in cholinergic stimulation. Fear-related modulations of face processing driven by amygdala signals may implicate not only fusiform cortex, but also earlier visual areas in occipital cortex (e.g., V1) and other distant regions involved in social, cognitive, or somatic responses (e.g., superior temporal sulcus, cingulate, or parietal areas). ⋯ Altogether, these fMRI and ERP results demonstrate that emotion face perception is a complex process that cannot be related to a single neural event taking place in a single brain regions, but rather implicates an interactive network with distributed activity in time and space. Moreover, although traditional models in cognitive neuropsychology have often considered that facial expression and facial identity are processed along two separate pathways, evidence from fMRI and ERPs suggests instead that emotional processing can strongly affect brain systems responsible for face recognition and memory. The functional implications of these interactions remain to be fully explored, but might play an important role in the normal development of face processing skills and in some neuropsychiatric disorders.