Anesthesia and analgesia
-
Anesthesia and analgesia · Jun 2002
Case ReportsThe treatment of severe pulmonary edema induced by beta adrenergic agonist tocolytic therapy with continuous positive airway pressure delivered by face mask.
We report the case of a pregnant patient who developed severe pulmonary edema secondary to beta-adrenergic agonist tocolytic therapy (salbutamol) and was successfully treated with mask-delivered continuous positive airway pressure ventilation.
-
Anesthesia and analgesia · Jun 2002
Pressure support compared with controlled mechanical ventilation in experimental lung injury.
It has been suggested that, in acute lung injury (ALI), spontaneous breathing activity may increase oxygenation because of an improvement of ventilation-perfusion distribution. Pressure support ventilation (PSV) is one of the assisted spontaneous breathing modes often used in critical care medicine. We sought to determine the prolonged effects of PSV on gas exchange in experimental ALI. We hypothesized that PSV may increase oxygenation because of an improvement in ventilation-perfusion distribution. Thus, ALI was induced in 20 pigs by using repetitive lung lavage. Thereafter, the animals were randomized to receive either PSV with a pressure level set to achieve a tidal volume >4 mL/kg and a respiratory rate <40 min(-1) (n = 10) or controlled mechanical ventilation (CMV) with a tidal volume of 10 mL/kg and a respiratory rate of 20 min(-1) (n = 10). Positive end-expiratory pressure was set at 10 cm H(2)O in both groups. Blood gas analyses and determination of ventilation-perfusion (.V(A)/.Q) distribution were performed at the onset of ALI and after 2, 4, 8, and 12 h. The main result was an improvement of oxygenation because of a decrease of pulmonary shunt and an increase of areas with normal .V(A)/.Q ratios during PSV (P < 0.005). However, during CMV, a more pronounced reduction of shunt was observed compared with PSV (P < 0.005). We conclude that, in this model of ALI, PSV improves gas exchange because of a reduction of .V(A)/.Q inequality. However, improvements in .V(A)/.Q distribution may be more effective with CMV than with PSV. ⋯ Assisted spontaneous breathing may have beneficial effects on gas exchange in acute lung injury. We tested this hypothesis for pressure support ventilation in an animal model of acute lung injury. Our results demonstrate that pressure support does not necessarily provide better gas exchange than controlled mechanical ventilation.
-
Anesthesia and analgesia · Jun 2002
The effects of OP-1206 alpha-CD on walking dysfunction in the rat neuropathic intermittent claudication model.
IV prostaglandin E1 improves clinical symptoms in patients with spinal canal stenosis. In the present study, we assessed the effects of OP-1206 alpha-CD, an orally active prostaglandin E1 analog, on walking dysfunction in the rat neuropathic intermittent claudication model. To induce spinal stenosis, two pieces of silicon rubber were placed in the lumbar (L4-6) epidural space in rats. Postsurgical walking function was measured using a treadmill apparatus. Spinal cord blood flow (SCBF) and skin blood flow (SKBF) were measured using a laser-Doppler flowmeter. OP-1206 alpha-CD was administered orally bid for 11 days from postoperative Day 3. In Control nontreated rats, a significant walking dysfunction was observed from Day 1 after the induction of spinal stenosis and persisted for 14 days when compared with the Sham-Operated group. On postoperative Day 15, SCBF revealed a significant reduction in the territory of spinal stenosis, although SKBF was not affected. OP-1206 alpha-CD significantly improved walking dysfunction on postoperative Days 5 (300 microg/kg), 7 (150 and 300 microg/kg), and 14 (150 and 300 microg/kg) when compared with the Vehicle-Treated group. On postoperative Day 15, the decrease in SCBF was significantly (150 and 300 microg/kg) improved by OP-1206 alpha-CD treatment, albeit SKBF remained unaffected. These data show that oral treatment with OP-1206 alpha-CD is effective in improving walking dysfunction induced by spinal canal stenosis, and this therapeutic effect is likely mediated by improved SCBF at the territory of spinal stenosis. ⋯ Intermittent motor dysfunction is a clinical symptom associated with partial spinal compression. The present study provides evidence that oral treatment with the prostaglandin E1 analog (OP-1206 alpha-CD) is effective in improving motor dysfunction and spinal cord blood flow in rats with spinal compression.
-
Anesthesia and analgesia · Jun 2002
An analysis of responses to levosimendan in the pulmonary vascular bed of the cat.
Calcium-sensitizing drugs, such as levosimendan, are a novel class of drug therapy for heart failure. We investigated the hypothesis that levosimendan is a pulmonary vasodepressor mediated through inhibition of phosphodiesterase, adenosine triphosphate (ATP)-dependent potassium channels, or both. We investigated responses to the calcium sensitizer levosimendan in the pulmonary vascular bed of the cat under conditions of controlled pulmonary blood flow and constant left atrial pressure when lobar arterial pressure was increased to a high steady level with the thromboxane A(2) analog U-46619. Under increased-tone conditions, levosimendan caused dose-related decreases in lobar arterial pressure without altering systemic arterial and left atrial pressure. Responses to levosimendan were significantly attenuated, although not completely, after the administration of U-37883A, a vascular selective nonsulfonylurea ATP-sensitive K(+)-channel-blocking drug. Responses to levosimendan were not significantly different after the administration of the nitric oxide synthase inhibitor L-N(5)-(1-iminoethyl)-ornithine or the cyclooxygenase inhibitor sodium meclofenamate or when lung ventilation was interrupted. These data show that levosimendan has significant vasodilator activity in the pulmonary vascular bed of the cat. They also suggest that pulmonary vasodilator responses to levosimendan are partially dependent on activation of ATP-sensitive K(+) channels and independent of the synthesis of nitric oxide, activation of cyclooxygenase enzyme, or changes in bronchomotor tone in the pulmonary vascular bed of the cat. ⋯ Calcium-sensitizing drugs, such as levosimendan, are a novel class of drug therapy for heart-failure treatment. The lung circulation affects both right- and left-sided heart failure. Levosimendan decreased lobar arterial pressure via a partial K(+)(ATP) (potassium channel sensitive to intracellular adenosine triphosphate levels)-dependent mechanism. These data suggest that, in addition to calcium-sensitizing activity, levosimendan decreases pulmonary resistance, which may also aid in the treatment of heart failure.
-
Anesthesia and analgesia · Jun 2002
The role of spinal opioid receptors in antinociceptive effects produced by intrathecal administration of hydromorphone and buprenorphine in the rat.
The intrathecal administration of morphine has been the standard therapy to control long-term intractable pain. Recently, a panel of pain therapy experts suggested that because of the lack of efficacy or because of the side effects produced by morphine in some patients, other drugs, such as hydromorphone and buprenorphine, should be investigated for their analgesic properties. We designed this study to compare the efficacy of intrathecal hydromorphone and buprenorphine to suppress thermal nociception in male Sprague-Dawley rats. An additional objective was to understand whether hydromorphone and buprenorphine bind and act as agonists to mu-, delta-, and kappa-spinal opioid receptors. Intrathecally-administered hydromorphone and buprenorphine produced a dose- and time-dependent increase in the tail-flick response latency in rats. The 50% effective dose value for the antinociceptive effect of buprenorphine and hydromorphone were 4 and 69.5 nmol/L, respectively. Both drugs act as agonists to mu-opioid receptors, as determined by their ability to displace [(3)H]-DAMGO from the spinal opioid receptors and by the ability of an opioid receptor antagonist, naloxone, to reverse their antinociceptive effects. Buprenorphine also has an agonistic effect on the kappa-opioid receptors. For the first time, we report that intrathecal buprenorphine is approximately 17 times more effective than hydromorphone in inhibiting thermal pain, and buprenorphine produces its antinociceptive effect by acting as an agonist at both mu- and kappa-spinal opioid receptors. Naloxone administered intrathecally was effective in preventing the antinociceptive effects of subsequent intrathecal injections of buprenorphine. ⋯ Hydromorphone and buprenorphine are two important drugs used for pain relief. We observed that intrathecal buprenorphine is 17 times more potent than hydromorphone to inhibit pain in rats. Both drugs exert their effects through specific spinal opioid receptors.