Anesthesia and analgesia
-
Some drugs used for sedation and anesthesia produce histopathologic central nervous system changes in juvenile animal models. These observations have raised concerns regarding the use of these drugs in pediatric patients. We summarized the findings in developing animals and describe the steps that the Food and Drug Administration (FDA) and others are taking to assess potential risks in pediatric patients. The FDA views this communication as opening a dialog with the anesthesia community to address this issue. ⋯ Animal studies suggest that neurodegeneration, with possible cognitive sequelae, is a potential long-term risk of anesthetics in neonatal and young pediatric patients. The existing nonclinical data implicate not only NMDA-receptor antagonists, but also drugs that potentiate gamma-aminobutyric acid signal transduction, as potentially neurotoxic to the developing brain. The potential for the combination of drugs that have activity at both receptor systems or that can induce more or less neurotoxicity is not clear; however, recent nonclinical data suggest that some combinations may be more neurotoxic than the individual components. The lack of information to date precludes the ability to designate any one anesthetic agent or regimen as safer than any other. Ongoing studies in juvenile animals should provide additional information regarding the risks. The FDA anticipates working with the anesthesia community and pharmaceutical industry to develop strategies for further assessing the safety of anesthetics in neonates and young children, and for providing data to guide clinicians in making the most informed decisions possible when choosing anesthetic regimens for their pediatric patients.
-
Anesthesia and analgesia · Mar 2007
ReviewSugammadex: another milestone in clinical neuromuscular pharmacology.
Sugammadex is a revolutionary investigational reversal drug currently undergoing Phase III testing whose introduction into clinical practice may change the face of clinical neuromuscular pharmacology. A modified gamma-cyclodextrin, sugammadex exerts its effect by forming very tight water-soluble complexes at a 1:1 ratio with steroidal neuromuscular blocking drugs (rocuronium > vecuronium >> pancuronium). During rocuronium-induced neuromuscular blockade, the IV administration of sugammadex creates a concentration gradient favoring the movement of rocuronium molecules from the neuromuscular junction back into the plasma, which results in a fast recovery of neuromuscular function. ⋯ Sugammadex will also facilitate the use of rocuronium for rapid sequence induction of anesthesia by providing a faster onset-offset profile than that seen with 1.0 mg/kg succinylcholine. Furthermore, no additional anticholinesterase or anticholinergic drugs would be needed for antagonism of residual neuromuscular blockade, which would mean the end of the cardiovascular and other side effects of these compounds. The clinical use of sugammadex promises to eliminate many of the shortcomings in our current practice with regard to the antagonism of rocuronium and possibly other steroidal neuromuscular blockers.
-
Anesthesia and analgesia · Mar 2007
ReviewEffect of postoperative analgesia on major postoperative complications: a systematic update of the evidence.
Few individual clinical trials have had sufficient subject numbers to definitively determine the effects of postoperative analgesia on major outcomes. ⋯ Overall, there is insufficient evidence to confirm or deny the ability of postoperative analgesic techniques to affect major postoperative mortality or morbidity. This is primarily due to typically insufficient subject numbers to detect differences in currently low incidences of postoperative complications.