Anesthesia and analgesia
-
Anesthesia and analgesia · Jan 2009
The effect of intravenous lidocaine on brain activation during non-noxious and acute noxious stimulation of the forepaw: a functional magnetic resonance imaging study in the rat.
Lidocaine can alleviate acute as well as chronic neuropathic pain at very low plasma concentrations in humans and laboratory animals. The mechanism(s) underlying lidocaine's analgesic effect when administered systemically is poorly understood but clearly not related to interruption of peripheral nerve conduction. Other targets for lidocaine's analgesic action(s) have been suggested, including sodium channels and other receptor sites in the central rather than peripheral nervous system. To our knowledge, the effect of lidocaine on the brain's functional response to pain has never been investigated. Here, we therefore characterized the effect of systemic lidocaine on the brain's response to innocuous and acute noxious stimulation in the rat using functional magnetic resonance imaging (fMRI). ⋯ The analgesic action of systemic lidocaine in acute pain is not reflected in a straightforward interruption of pain-induced fMRI brain activation as has been observed with opioids. The enhancement of cortical fMRI responses to acute pain by lidocaine observed here has also been reported for cocaine. We recently showed that both lidocaine and cocaine increased intracellular calcium concentrations in cortex, suggesting that this pharmacological effect could account for the enhanced sensitivity to somatosensory stimulation. As our model only measured physiological acute pain, it will be important to also test the response of these same pathways to lidocaine in a model of neuropathic pain to further investigate lidocaine's analgesic mechanism of action.
-
Anesthesia and analgesia · Jan 2009
Propofol and isoflurane enhancement of tonic gamma-aminobutyric acid type a current in cardiac vagal neurons in the nucleus ambiguus.
General anesthesia with propofol and isoflurane induces alterations of the cardiovascular system, including hypotension and changes in heart rate. The preganglionic cardiac vagal neurons (CVNs) are one of the major central components controlling heart rate and autonomic regulation. In this study, we examined whether propofol and isoflurane act on phasic or tonic gamma-aminobutyric acid type A (GABA(A)) receptor-mediated inhibition in CVNs. ⋯ The results demonstrate that the general anesthetics propofol and isoflurane enhance both phasic and tonic GABA(A) receptor-mediated inhibition of CVNs.