Anesthesia and analgesia
-
Anesthesia and analgesia · Jul 2010
A survey of current management of neuromuscular block in the United States and Europe.
Most anaesthetists and anesthesiologists incorrectly estimate the incidence of post-operative residual paralysis to be less than 1%.
pearl -
Anesthesia and analgesia · Jul 2010
Global warming potential of inhaled anesthetics: application to clinical use.
Inhaled anesthetics are recognized greenhouse gases. Calculating their relative impact during common clinical usage will allow comparison to each other and to carbon dioxide emissions in general. ⋯ Under comparable and common clinical conditions, desflurane has a greater potential impact on global warming than either isoflurane or sevoflurane. N2O alone produces a sizable greenhouse gas contribution relative to sevoflurane or isoflurane. Additionally, 60% N2O combined with potent inhaled anesthetics to deliver 1 MAC of anesthetic substantially increases the environmental impact of sevoflurane and isoflurane, and decreases that of desflurane. N2O is destructive to the ozone layer as well as possessing GWP; it continues to have impact over a longer timeframe, and may not be an environmentally sound tradeoff for desflurane. From our calculations, avoiding N2O and unnecessarily high fresh gas flow rates can reduce the environmental impact of inhaled anesthetics.
-
Anesthesia and analgesia · Jul 2010
ReviewResidual neuromuscular block: lessons unlearned. Part II: methods to reduce the risk of residual weakness.
The aim of the second part of this review is to examine optimal neuromuscular management strategies that can be used by clinicians to reduce the risk of residual paralysis in the early postoperative period. Current evidence has demonstrated that frequently used clinical tests of neuromuscular function (such as head lift or hand grip) cannot reliably exclude the presence of residual paralysis. When qualitative (visual or tactile) neuromuscular monitoring is used (train-of-four [TOF], double-burst, or tetanic stimulation patterns), clinicians often are unable to detect fade when TOF ratios are between 0.6 and 1.0. ⋯ The use of intermediate-acting neuromuscular blocking drugs (NMBDs) can reduce, but do not eliminate, the risk of residual paralysis when compared with long-acting NMBDs. In addition, complete recovery of neuromuscular function is more likely when anticholinesterases are administered early (>15-20 minutes before tracheal extubation) and at a shallower depth of block (TOF count of 4). Finally, the recent development of rapid-onset, short-acting NMBDs and selective neuromuscular reversal drugs that can effectively antagonize deep levels of blockade may provide clinicians with novel pharmacologic approaches for the prevention of postoperative residual weakness and its associated complications.
-
Anesthesia and analgesia · Jul 2010
ReviewLumbar cerebrospinal fluid drainage for thoracoabdominal aortic surgery: rationale and practical considerations for management.
Paraplegia remains one of the most devastating complications of thoracoabdominal aortic surgery and is associated with a significant increase in both morbidity and mortality. Modern aortic repair techniques use many modalities aimed at reducing the risk of spinal cord ischemia inherent with surgical management. One of these modalities that acts via optimizing spinal cord blood flow is lumbar cerebrospinal fluid (CSF) drainage. ⋯ Despite no definitive proof of efficacy for reducing spinal cord injury, there are compelling data supporting its use. However, the potential benefit of CSF drainage must be balanced against the risks associated with its use, including nerve injury during insertion, compressive neuraxial hematoma formation, intracranial hemorrhage due to excessive drainage, and infection. The optimal benefit to risk ratio can be achieved by understanding the rationale for its use and following practical management guidelines.