Anesthesia and analgesia
-
Anesthesia and analgesia · Mar 2015
Comparative StudyLidocaine Preferentially Inhibits the Function of Purinergic P2X7 Receptors Expressed in Xenopus Oocytes.
Lidocaine has been widely used to relieve acute pain and chronic refractory pain effectively by both systemic and local administration. Numerous studies reported that lidocaine affects several pain signaling pathways as well as voltage-gated sodium channels, suggesting the existence of multiple mechanisms underlying pain relief by lidocaine. Some extracellular adenosine triphosphate (ATP) receptor subunits are thought to play a role in chronic pain mechanisms, but there have been few studies on the effects of lidocaine on ATP receptors. We studied the effects of lidocaine on purinergic P2X3, P2X4, and P2X7 receptors to explore the mechanisms underlying pain-relieving effects of lidocaine. ⋯ Lidocaine selectively inhibited the function of the P2X7 receptor expressed in Xenopus oocytes. This effect may be caused by acting on sites in the ion channel pore both extracellularly and intracellularly. These results help to understand the mechanisms underlying the analgesic effects of lidocaine when it is administered locally at least.
-
Anesthesia and analgesia · Mar 2015
Comparative StudyHydroxyethyl Starch and Acute Kidney Injury in Orthotopic Liver Transplantation: A Single-Center Retrospective Review.
Acute kidney injury (AKI) is a frequent complication of orthotopic liver transplantation (OLT). Hepatic failure pathophysiology and intraoperative events contribute to AKI after OLT. Colloids are routinely used to maintain intravascular volume during OLT. Recent evidence has implicated 6% hydroxyethyl starch (HES) (130/0.4) with AKI in critically ill patients. ⋯ Patients receiving 6% HES (130/0.4) likely had an increased odds of AKI compared with patients receiving 5% albumin during OLT. These retrospective findings are consistent with recent clinical trials that found an association between 6% HES (130/0.4) and renal injury in critically ill patients.
-
Hypertrophic cardiomyopathy (HCM) is a relatively common disorder that anesthesiologists encounter among patients in the perioperative period. Fifty years ago, HCM was thought to be an obscure disease. Today, however, our understanding and ability to diagnose patients with HCM have improved dramatically. ⋯ Diagnosis is most often made using echocardiographic assessment of left ventricular hypertrophy, left ventricular outflow tract gradients, systolic and diastolic function, and mitral valve anatomy and function. Cardiac magnetic resonance imaging also has a diagnostic role by determining the extent and location of left ventricular hypertrophy and the anatomic abnormalities of the mitral valve and papillary muscles. In this review on hypertrophic cardiomyopathy for the noncardiac anesthesiologist, we discuss the clinical presentation and genetic mutations associated with HCM, the critical role of echocardiography in the diagnosis and the assessment of surgical interventions, and the perioperative management of patients with HCM undergoing noncardiac surgery and management of the parturient with HCM.