Epilepsia
-
Comparative Study
Seizure recurrence and risk factors after antiepilepsy drug withdrawal in children with brain tumors.
To study seizure outcome after antiepilepsy drug (AED) withdrawal in brain tumor patients and to analyze risk factors for seizure recurrence. ⋯ AED withdrawal can be successfully achieved in majority of carefully selected patients. WBRT and multiple tumor resections seem to be associated with an increased hazard for seizure recurrence.
-
To illustrate a functional interpretation of blood oxygen level-dependent (BOLD) signal changes associated with generalized spike-and-wave discharges in patients with absence seizures and to demonstrate the reproducibility of these findings in one case. ⋯ The GSWD-associated changes seen here involve cortical regions that have been shown to be more active at conscious rest compared with sleep and with various types of extroverted perception and action. These regions have been proposed to constitute the core of a functional "default mode" system. We propose that the findings of deactivation of this distributed brain system during GSWDs mirrors the clinical manifestation of GSWDs (i.e., absence seizures). Furthermore, we suggest that these deactivations may reflect the functional consequences of GSWDs on physiologic brain activity at rest rather than direct hemodynamic correlates of epileptic discharges.
-
Comparative Study
Neocortical microenvironment in patients with intractable epilepsy: potassium and chloride concentrations.
The regulation of extracellular ion concentrations plays an important role in neuronal function and epileptogenesis. Despite the many studies into the mechanisms of epileptogenesis in human experimental models, no data are available regarding the fluctuations of extracellular potassium ([K(+)](o)) and chloride ([Cl(-)](o)) concentrations, which could underlie seizure susceptibility in human chronically epileptic tissues in vivo. ⋯ These data may represent abnormalities in ion homeostasis of the epileptic brain.
-
Perinatal hypoxia is an important cause of brain injury in the newborn and has consequences that are potentially devastating and life-long, such as an increased risk of epilepsy in later life. The postsynaptic density (PSD) is a cytoskeletal specialization involved in the anchoring of neurotransmitter receptors and in regulating the response of postsynaptic neurons to synaptic stimulation. The postsynaptic protein PSD-95 binds to the N-methyl-D-aspartate receptor (NMDAR) subunit, and hence activates cascades of NMDAR-mediated events, such as cyclic adenosine monophosphate (cAMP)-responsive element binding protein phosphorylation at serine-133 (pCREB(Serine-133)). Here we studied the effect of perinatal hypoxia on protein interactions involving PSD-95 and the NMDAR, as well as pCREB(Ser-133) expression at an age when the animals show increased seizure susceptibility. ⋯ This study demonstrates that the decrease in several protein complexes that are essential components of the postsynaptic apparatus is associated with the observed increase in seizure susceptibility in adult rats with prior exposure to perinatal hypoxia. The results indicate that reductions in PSD-95 expression, PSD-95 binding of NMDAR subunits, and subsequent NMDAR-mediated CREB phosphorylation, particularly in hippocampal CA1, are long-term consequences of perinatal hypoxia and may, at least in part, contribute to perinatal hypoxia-induced reduction in seizure threshold.