Cancer research
-
To search for possible synergy between topoisomerase (topo) II-directed chemotherapeutic agents and topo I-directed agents, IL-60 human progranulocytic leukemia cells were incubated with etoposide in the absence or presence of camptothecin (CPT). Treatment of HL-60 cells for 1 h with 15-20 microM etoposide resulted in the death of 99-99.9% of the cells as assessed by colony formation in soft agar. Unexpectedly, simultaneous incubation with 1 microM CPT increased the survival of etoposide-treated cells as much as 30-fold. ⋯ Aphidicolin, an inhibitor of replicative DNA polymerases, enhanced the survival of etoposide-treated HL-60 cells less than 3-fold. In contrast, inhibitors of RNA synthesis (cordycepin or 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole) enhanced the survival of etoposide-treated HL-60 cells as much as 20-fold. The potential biological and therapeutic implications of these results are discussed.
-
We have previously demonstrated that interferon (IFN) treatment of mice bearing the spontaneously metastasizing B16F10L murine melanoma on days -5 to -1 prior to surgical removal (day 0) of the primary tumor resulted in survival of greater than 50% of treated mice. The antitumor effect was correlated with an early increase of natural killer (NK) cell cytotoxicity followed by a later developing specific cytolytic T-cell response. The purpose of this study was to establish definitively the roles of NK, CD4, and CD8 cells as mediators of the antitumor/antimetastatic effects of IFN treatment by administration of anti-asialo-GM1, anti-L3T4, and/or anti-Lyt-2 antisera. ⋯ In vitro analysis of NK cytotoxicity on day 1 after surgery demonstrated (a) a lack of IFN induced stimulation of NK activity in CD4 depleted mice and (b) a significant increase in both baseline and IFN induced NK cytotoxicity in CD8 depleted mice. These data suggested a CD8 cell mediated inhibition of NK activity/stimulation in CD4 depleted mice, possibly responsible for the lack of response to IFN therapy in that group. These results demonstrate the importance of not only individual components of the immune system but also the interaction of these components in both the natural and IFN induced control of spontaneous B16F10L metastases.
-
We are searching for relatively nontoxic compounds that can positively modulate the efficacy of antitumor alkylating agents. Lonidamine inhibits cellular energy metabolism and could potentially increase damage by alkylating agents if cellular defenses are energy requiring. Exposure of cells to lonidamine (500 microM) for 2 h under hypoxic conditions followed by 1-h exposures to lonidamine plus alkylating agents under normally oxygenated conditions in vitro significantly increased the cell kill achieved by cis-diamminedichloroplatinum(II) (CDDP) approximately 5-fold and by D-tetraplatin approximately 10-fold at 90% inhibitory concentration in MCF-7/CDDP (CDDP-resistant) cells. ⋯ The increase in bone marrow toxicity caused by lonidamine in addition to the alkylating agents was less than for tumor cells. Finally, in the EMT6 murine mammary carcinoma, use of lonidamine at 500 mg/kg twice daily along with CDDP, carboplatin, thiotepa, and cyclophosphamide significantly increased tumor growth delays by approximately 1.6- to 3.0-fold. The results suggest that lonidamine can positively modulate antitumor alkylating agent cytotoxicity and may be a clinically useful adjunctive therapy with these drugs.