Cancer research
-
Bryostatin 1, a potent activator of protein kinase C, has antitumor activity against murine lymphoma, leukemia, and melanoma. In vitro, this compound stimulates the release of gamma-interferon, interleukins, and hematopoietic growth factors from accessory cells and activates both T- and B-cells. Bryostatin 1 is also able to stimulate neutrophils to undergo oxidative burst and degranulation. ⋯ The weight loss is exacerbated by Salmonella infection with mice receiving bryostatin 1 and S. typhimurium, in that they lose approximately 33% of body weight prior to death. Thus, at doses used to treat murine tumors, bryostatin 1 treatment does not affect the clearance of S. typhimurium from the blood but does decrease the killing of bacteria in the liver and spleen, leading to early animal death. Such potential effects of bryostatin 1 on the outcome of bacterial infections should be evaluated in ongoing human trials of this agent.
-
Synergy, when it can be convincingly established, is an effective strategy for the development of novel drug combinations. We have evaluated the interaction between 2'-deoxy-5-azacytidine (DAC) and 9-dimethylaminomethyl-10-hydroxycamptothecin (topotecan) based on our hypothesis that DAC, through DNA hypomethylation, might increase the transcription of topoisomerase I (topo I) leading to increased sensitivity to topotecan. Five human tumor cell lines, A375 melanoma, DX-3 melanoma, DMS4C non-small cell lung carcinoma, UP-1 unknown primary adenocarcinoma, SN12C renal carcinoma, and the murine CT-26 tumor cell line, were studied. ⋯ For animals receiving a single sequential treatment with DAC and topotecan, the median time until the mean tumor size reached 20 mm was 38 days, and for the group with multiple sequential combination treatments the time was 51 days. Studies of the mechanism of the interaction showed that the activity of topotecan versus each cell line correlated with the topo I activity in nuclear extracts However, there was no correlation between topo I levels and synergy and no reproducible increase in topo I activity following exposure to DAC. Thus, while the exact mechanism of the interaction remains unclear, DAC can be effectively combined with topotecan to enhance antitumor activity.
-
L1210 cell lines, selected for resistance to deoxyadenosine due to the loss of allosteric inhibition of ribonucleotide reductase by dATP, had altered steady-state levels of the mRNAs for c-myc, fos, and p53. Wild-type L1210 cells had constitutive steady-state levels of c-myc and p53 with little or no fos mRNA. Two different deoxyadenosine-resistant cell lines (Y8 and ED2) had elevated steady-state levels of c-myc and fos but essentially no p53 mRNA. ⋯ Nuclear runoff experiments showed that the rates of transcription for c-myc in the Y8 and ED2 cells were elevated and could account for the increased steady-state levels of c-myc in these two cell lines. The transcription rate for p53 mRNA was not decreased in the Y8 and ED2 cells and therefore did not account for the loss of the steady-state levels of p53 in the cells. Cycloheximide treatment of the Y8 and ED2 cells resulted in a marked increase in the steady-state p53 mRNA level, indicating that a protein which was rapidly turned over was responsible for the extremely short half-life of p53 mRNA in these two cell lines.