Cancer research
-
ZD2767 represents an improved version of antibody-directed enzyme prodrug therapy. It consists of a conjugate of the F(ab')2 A5B7 antibody fragment and carboxypeptidase G2 (CPG2) and a prodrug, 4-[N,N-bis(2-iodoethyl)amino]phenoxycarbonyl L-glutamic acid. The IC50 of the prodrug against LoVo colorectal tumor cells was 47 microM, and cleavage by CPG2 released the potent bis-iodo phenol mustard drug (IC50 = 0.34 microM). ⋯ A single round of therapy involving the administration of the prodrug 72 h after the conjugate to athymic mice bearing established LoVo xenografts resulted in approximately 50% of the tumors undergoing complete regressions, tumor growth delays greater than 30 days, and little toxicity (as judged by body-weight loss). Similar studies using a control antibody-CPG2 conjugate that does not bind to LoVo tumor cells resulted in a growth delay of less than 5 days, confirming the tumor specificity of this approach. These studies demonstrate the potential of ZD2767 for the treatment of colorectal cancer.
-
Radioimmunotherapy (RIT) does not readily eradicate common solid tumors and therefore requires augmentation by complementary therapies that do not increase normal tissue damage. We have examined the efficacy of RIT combined with 5,6-dimethylxanthenone-4-acetic acid (DMXAA), a drug which induces immunomodulation and cytokine production and preferentially reduces tumor blood flow, using a colorectal xenograft model in nude mice. Although an optimal i.p. dose (27.5 mg/kg) of drug alone induced massive hemorrhagic necrosis of all but a thin peripheral rim of viable tumor cells, survival was unaffected. ⋯ Tumor histology and phosphor image plate analysis reflected these results. When given without RIT, the two drugs combined, although not alone, also significantly inhibited tumor growth. Drug-induced tumor necrosis and tumor retention of radioantibody may both contribute to the enhanced RIT produced by this combined complementary therapy.
-
Flavopiridol (L86-8275), a N-methylpiperidinyl, chlorophenyl flavone, can inhibit cell cycle progression in either G1 or G2 and is a potent cyclin-dependent kinase (CDK) 1 inhibitor. In this study, we used MCF-7 breast carcinoma cells that are wild type for p53 and pRb positive and contain CDK4-cyclin D1 and MDA-MB-468 breast carcinoma cells that are mutant p53, pRb negative, and lack CDK4-cyclin D1 to investigate the G1 arrest produced by Flavopiridol. Recombinant CDK4-cyclin D1 was inhibited potently by Flavopiridol (Kiapp, 65 nM), competitive with respect to ATP. ⋯ This increased immunoprecipitated kinase activity was dependent on the Flavopiridol concentration added to intact cells and was associated with a reduction of CDK2 tyrosine phosphorylation. Cyclin E and A levels were not altered to the same extent as cyclin D, and neither CDK4 nor CDK2 levels were changed in response to Flavopiridol. Inhibition of the CDK4 and/or CDK2 kinase activity by Flavopiridol can therefore account for the G1 arrest observed after exposure to Flavopiridol.