Cancer research
-
Recent molecular genetic studies have suggested that multifocal urothelial cancers are derived from an identical progenitor cell. However, the clonal origin of multifocal urothelial cancers of a low-grade superficial type has not been fully defined. Using microsatellite markers, we examined genetic alterations at 20 loci on eight chromosomal arms (2q, 4p, 4q, 8p, 9p, 9q, 11p, and 17p) in 87 metachronous and/or synchronous multifocal urothelial cancers, which included 84 low-grade superficial papillary tumors from 29 patients. ⋯ The results indicate that most multifocal low-grade superficial urothelial cancers are genetically stable despite their incidence of frequent recurrence, and genetic divergence occurs in a subset of patients. This heterotopic spread and genetic divergence may occur long before the clinical manifestation of multiplicity from a single transformed cell. These data support the previous view that heterotopic spread of transformed progenitor cells and genetic divergence occur after chromosome 9 alterations in most of low-grade superficial urothelial cancers.
-
Antitumor and radiosensitizing effects of (E)-2'-deoxy-2'-(fluoromethylene) cytidine (FMdC), a novel inhibitor of ribonucleotide reductase, were evaluated on nude mice bearing s.c. human C33-A cervix cancer and U-87 MG glioblastoma xenografts. FMdC given once daily has a dose-dependent antitumor effect. The maximum tolerated dose in the mice was reached with 10 daily i.p. administrations of 10 mg/kg over 12 days. ⋯ FMdC produced moderate myelosuppression in the mice bearing cervix cancer, whereas leukocytosis occurred in the mice bearing glioblastoma at a low dose. Slightly increased skin toxicity (only with U-87 MG tumor) was observed, as compared with RT alone. In conclusion, FMdC is a potent cytotoxic agent and able to modify the radiation response of C33-A and U-87 MG xenografts.
-
It has recently been suggested that bisphosphonates may have direct antitumor effects in vivo, in addition to their therapeutic antiresorptive properties. Bisphosphonates can inhibit proliferation and cause apoptosis in human myeloma cells in vitro. In macrophages, bisphosphonate-induced apoptosis was recently found to be a result of inhibition of the mevalonate (MVA) pathway. ⋯ Geranylgeraniol and farnesol prevented incadronate-induced apoptosis and had a partial effect on cell cycle arrest. MVA and geranylgeraniol prevented mevastatin-induced apoptosis and inhibition of proliferation and completely prevented the effect of mevastatin on the cell cycle. These observations demonstrate that incadronate-induced apoptosis in human myeloma cells in vitro is the result of inhibition of the MVA pathway.