Cancer research
-
The role of the phosphatidylinositol 3'-kinase (PI3K)/Akt pathway during tobacco carcinogen-induced transformation is unknown. To address this question, we evaluated this pathway in isogenic immortalized or tumorigenic human bronchial epithelial cells in vitro, as well as in progressive murine lung lesions induced by a tobacco-specific carcinogen, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. ⋯ In vivo, increased activation of Akt and mammalian target of rapamycin was observed with increased phenotypic progression. Collectively, these results support the hypothesis that maintenance of Akt activity is necessary for survival of preneoplastic as well as transformed lung epithelial cells and suggest that inhibition of the PI3K/Akt pathway might be a useful approach to arrest lung tumorigenesis.
-
Deregulation of the cell cycle commonly occurs during tumorigenesis, resulting in unrestricted cell proliferation and independence from mitogens. Cyclin-dependent kinase inhibitors have the potential to induce cell cycle arrest and apoptosis in cancer cells. CYC202 (R-roscovitine) is a potent inhibitor of CDK2/cyclin E that is undergoing clinical trials. ⋯ It can be concluded that although CYC202 can act as a CDK2 inhibitor, it also has the potential to inhibit CDK4 and CDK1 activities in cancer cells through the down-regulation of the corresponding cyclin partners. This provides a possible mechanism by which CYC202 can cause a reduction in retinoblastoma protein phosphorylation at multiple sites and cell cycle arrest in G(1), S, and G(2)-M phases. In addition to providing useful insights into the molecular pharmacology of CYC202 in human cancer cells, the results also suggest potential pharmacodynamic end points for use in clinical trials with the drug.