Cancer research
-
Comparative Study
Additive antitumor effect of aromatase inhibitor letrozole and antiestrogen fulvestrant in a postmenopausal breast cancer model.
Blocking estrogen receptors with antiestrogens and blocking estrogen synthesis with aromatase inhibitors are two strategies currently being used for reducing the effect of estrogen in postmenopausal estrogen receptor-positive breast cancer patients. To optimize these treatment strategies, we have investigated whether tumor progression can be delayed by combining the pure antiestrogen fulvestrant with the nonsteroidal aromatase inhibitor letrozole. These studies were done in ovariectomized, athymic mice bearing tumors of estrogen receptor-positive human breast cancer cells stably transfected with the aromatase gene (MCF-7Ca). ⋯ However, tumors continued to increase in volume in these groups. Tumors of animals treated with the combination of letrozole plus Faslodex regressed over 29 weeks of treatment by 45%. Thus, the combination of letrozole plus fulvestrant was more effective in suppressing tumor growth than either letrozole or fulvestrant alone or sequential therapies with tamoxifen or a higher dose of letrozole (100 microg/d).
-
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL or Apo2L) has been shown to induce apoptosis specifically in cancer cells while sparing normal tissues. Unfortunately not all cancer cells respond to TRAIL; therefore, TRAIL sensitizing agents are currently being explored. We have identified synthetic triterpenoids, including 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid (CDDO) and its derivative 1-(2-cyano-3,12-dioxooleana-1,9-dien-28-oyl) imidazole (CDDO-Im), which sensitize TRAIL-resistant cancer cells to TRAIL-mediated apoptosis. ⋯ CDDO and CDDO-Im, when used in combination with TRAIL, have no adverse affect on cultured normal human mammary epithelial cells. Moreover, CDDO-Im and TRAIL are well tolerated in mice and the combination of CDDO-Im and TRAIL reduces tumor burden in vivo in an MDA-MB-468 tumor xenograft model. These data suggest that CDDO and CDDO-Im may be useful for selectively reversing the TRAIL-resistant phenotype in cancer but not normal cells.
-
The extent of angiogenesis and/or vascular endothelial growth factor (VEGF) expression in neuroblastoma tumors correlates with metastases, N-myc amplification, and poor clinical outcome. Understanding the mechanisms regulating VEGF expression in neuroblastoma cells provides additional therapeutic options to control neuroblastoma tumor growth. VEGF mRNA is controlled by growth factors and hypoxia via the transcription factor hypoxia-inducible factor (HIF-1alpha). ⋯ Furthermore, we confirmed that HIF-1alpha mediates approximately 40% of the growth factor activity stimulating VEGF protein expression. Topotecan blocked the IGF-I-stimulated increase in HIF-1alpha but not HIF-1beta, and this resulted in a decrease in VEGF in four neuroblastoma cell lines tested. These data indicate that growth factors in an autocrine or paracrine manner play a major role in regulating VEGF levels in neuroblastoma cells and that targeted therapies to phosphatidylinositol 3-kinase, mammalian target of rapamycin, and/or HIF-1alpha have the potential to inhibit VEGF expression and limit neuroblastoma tumor growth.