Cancer research
-
Medulloblastomas are among the most common malignant brain tumors in childhood. They typically arise from neoplastic transformation of granule cell precursors in the cerebellum via deregulation of molecular pathways involved in normal cerebellar development. ⋯ Using array-based chromosomal comparative genomic hybridization, we show that genetic instability resulting from inactivation of the p53 pathway together with deregulation of proliferation induced by Rb loss eventually leads to neoplastic transformation of these cells by acquiring additional genetic mutations, mainly affecting N-Myc and Ptch2 genes. Moreover, we show that p53 loss influences molecular mechanisms that cannot be mimicked by the loss of either p19(ARF), p21, or ATM.
-
The present work focused on the potential involvement of selective adaptations of the androgen receptor pathway in the initiation and progression of prostate cancer. We defined the androgen receptor pathway by selecting 200 genes that were androgen responsive in prostate cancer cell lines and/or xenografts. This androgen receptor pathway gene signature was then used for profiling prostate cancer xenografts and patient-derived samples. ⋯ Enhanced androgen receptor activity is involved in the early stages of prostate cancer. In well-differentiated prostate cancer, the androgen receptor activates growth-promoting as well as growth-inhibiting and cell differentiation genes resulting in a low growth rate. The progression from low-grade to high-grade prostate carcinoma and metastases is mediated by a selective down-regulation of the androgen receptor target genes that inhibit proliferation, induce differentiation, or mediate apoptosis.
-
Noninvasive bioluminescence imaging of normal and spontaneously transformed prostate tissue in mice.
Several transgenic mouse models of prostate cancer have been developed recently that are able to recapitulate many key biological features of the human condition. It would, therefore, be desirable to employ these models to test the efficacy of new therapeutics before clinical trial; however, the variable onset and non-visible nature of prostate tumor development limit their use for such applications. We now report the generation of a transgenic reporter mouse that should obviate these limitations by enabling noninvasive in vivo bioluminescence imaging of normal and spontaneously transformed prostate tissue in the mouse. ⋯ These results suggest that this reporter should enable in vivo imaging of both androgen-dependent and androgen-independent prostate tumor models. As proof-of-principle, we show that we could noninvasively image SV40 T antigen-induced prostate tumorigenesis in mice with PSA-Luc. Furthermore, we show that our noninvasive imaging strategy can be successfully used to image tumor response to androgen ablation in transgenic mice and, as a result, that we can rapidly identify individual animals capable of sustaining tumor growth in the absence of androgen.