Cancer research
-
Clinical studies indicate that Herceptin (trastuzumab), a recombinant humanized monoclonal antibody directed against the human epidermal growth factor receptor-2 (HER-2) tyrosine kinase growth factor receptor, provides a significant but transient survival advantage to a subset of patients with HER-2-overexpressing metastatic breast cancer when given as a first-line agent. Increased insulin-like growth factor (IGF)-I receptor (IGF-IR) signaling has recently been identified as a potential factor adversely influencing the response to Herceptin. We examined the effect of recombinant human IGF binding protein 3 (rhIGFBP-3), an antagonist of IGF-IR signaling, in Herceptin-resistant breast cells in vitro and in tumors in vivo. ⋯ We show, for the first time, the antitumor activity of rhIGFBP-3 against advanced-stage MCF-7/HER2-18-transfected human breast cancer xenografts and its potentiation of Herceptin activity. We also provide evidence that IGF-IR activation counters the early suppressive effect of Herceptin on HER-2 signaling via Akt and p44/p42 mitogen-activated protein kinase (MAPK), and that inhibition of HER-2-overexpressing human breast tumor growth by rhIGFBP-3 is associated with restored down-regulation of Akt and p44/p42 MAPK phosphorylation in vitro and in vivo. These results emphasize the merit of evaluating simultaneous blockade of the HER-2 and IGF-IR pathways using combination therapy with rhIGFBP-3 plus Herceptin in human clinical trials of patients with HER-2-positive breast cancer.
-
An elevated number of Gr-1+CD11b+ myeloid cells has been described in mice bearing transplantable tumors, and has been associated with immune suppression. We examined the role of such myeloid suppressor cells in mice bearing the spontaneously transformed syngeneic mouse ovarian surface epithelial cell line, 1D8. We observed high levels of CD80 expression by Gr-1+CD11b+ cells from spleen, ascites, and tumor tissue of mice bearing 1D8 ovarian carcinoma, whereas CD40 and CD86 were absent. ⋯ Suppression via CD80 on Gr-1+CD11b+ myeloid cells was mediated by CD4+CD25+ T regulatory cells and required CD152. CD80 knockout or antibody blockade of either CD80 or CD152 retarded the growth of 1D8 tumor in mice, suggesting that expression of CD80 on Gr-1+CD11b+ myeloid cells triggered by 1D8 ovarian carcinoma suppresses antigen-specific immunity via CD152 signaling and CD4+CD25+ T regulatory cells. Thus, CD80-dependent responses to myeloid suppressor cells may contribute to tumor tolerance and the progression of ovarian carcinoma.
-
The Bcr-Abl tyrosine kinase is the causative factor in most chronic myelogenous leukemia (CML) patients. We have shown that Bcr-Abl is associated with a cluster of signaling proteins, including Janus kinase (Jak) 2, growth factor receptor binding protein 2-associated binder (Gab) 2, Akt, and glycogen synthase kinase (GSK)-3beta. ⋯ Similar to wild-type Bcr-Abl+ cells, inhibition of Jak2 by Ag490 treatment resulted in decrease of pSer Akt and c-Myc in imatinib-resistant cells. These results identify Jak2 as a potentially important therapeutic target for CML.