Cancer research
-
The apoptotic ligand TRAIL is believed to have promise as a cancer gene therapy, yet many types of cancer, including gliomas, have exhibited resistance to TRAIL-induced apoptosis. Here, we show that therapeutic combination of the lipoxygenase inhibitor MK886 and TRAIL-secreting human mesenchymal stem cells (MSC-TRAIL) provide targeted and prolonged delivery of TRAIL both in vitro and in orthotopic mouse models of glioma. Treatment of either TRAIL-sensitive or TRAIL-resistant human glioma cells with MK886 and MSC-TRAIL resulted in significantly enhanced apoptosis compared with each agent alone. ⋯ This regulation was accompanied by a substantial increase in caspase activation after combined treatment. Furthermore, in vivo survival experiments and imaging analysis in orthotopic xenografted mice showed that MSC-based TRAIL gene delivery combined with MK886 into the tumors had greater therapeutic efficacy than single-agent treatment. Together, our findings indicate that MK886 combined with MSC-based TRAIL gene delivery may represent a novel strategy for improving the treatment of malignant gliomas.
-
Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related deaths worldwide and results from a complex interaction between carcinogen exposure and inherent susceptibility. Despite its prevalence, genetic factors that predispose to the development of lung cancer remain elusive. Inbred mouse models offer a unique and clinically relevant tool to study genetic factors that contribute to lung carcinogenesis due to the development of tumors that resemble human adenocarcinoma and broad strain-specific variation in cancer incidence after carcinogen administration. ⋯ Furthermore, we show that this is not due to differences in tumor-promoting inflammatory changes or variability in immunosurveillance by the adaptive immune system but results from strain-specific differences in natural killer (NK) cell cytotoxicity. Using a newly discovered congenic strain of mice, we show a previously unrecognized role for strain-specific polymorphisms in the natural killer gene complex (NKC) in immunosurveillance for carcinogen-induced lung cancer. Because polymorphisms in the NKC are highly prevalent in man, our data may explain why certain individuals without obvious risk factors develop lung cancer whereas others remain resistant to the disease despite heavy environmental carcinogen exposure.