Cancer research
-
The extent to which T-cell-mediated immune surveillance is impaired in human cancer remains a question of major importance, given its potential impact on the development of generalized treatments of advanced disease where the highest degree of heterogeneity exists. Here, we report the first global analysis of immune dysfunction in patients with advanced hepatocellular carcinoma (HCC). Using multi-parameter fluorescence-activated cell sorting analysis, we quantified the cumulative frequency of regulatory T cells (Treg), exhausted CD4(+) helper T cells, and myeloid-derived suppressor cells (MDSC) to gain concurrent views on the overall level of immune dysfunction in these inoperable patients. ⋯ In dampening T-cell-mediated antitumor immunity, we hypothesized that these processes may facilitate HCC progression and thwart the efficacy of immunotherapeutic interventions. In testing this hypothesis, we showed that combined regimens to deplete Tregs, MDSC, and PD-1(+) T cells in patients with advanced HCC restored production of granzyme B by CD8(+) T cells, reaching levels observed in normal controls and also modestly increased the number of IFN-γ producing CD4(+) T cells. These clinical findings encourage efforts to restore T-cell function in patients with advanced stage disease by highlighting combined approaches to deplete endogenous suppressor cell populations that can also expand effector T-cell populations.
-
Enhanced permeability of the tumor vasculature allows macromolecules to enter the tumor interstitial space, whereas the suppressed lymphatic filtration allows them to stay there. This phenomenon, enhanced permeability and retention (EPR), has been the basis of nanotechnology platforms to deliver drugs to tumors. However, progress in developing effective drugs using this approach has been hampered by heterogeneity of EPR effect in different tumors and limited experimental data from patients on effectiveness of this mechanism as related to enhanced drug accumulation. This report summarizes the workshop discussions on key issues of the EPR effect and major gaps that need to be addressed to effectively advance nanoparticle-based drug delivery.
-
Although studies have suggested that bone marrow human mesenchymal stem cells (BM-hMSC) may be used as delivery vehicles for cancer therapy, it remains unclear whether BM-hMSCs are capable of targeting cancer stem cells, including glioma stem cells (GSC), which are the tumor-initiating cells responsible for treatment failures. Using standard glioma models, we identify TGF-β as a tumor factor that attracts BM-hMSCs via TGF-β receptors (TGFβR) on BM-hMSCs. ⋯ In therapeutic studies, we show that BM-hMSCs carrying the oncolytic adenovirus Delta-24-RGD prolonged the survival of TGF-β-secreting GSC xenografts and that the efficacy of this strategy can be abrogated by inhibition of TGFβR on BM-hMSCs. These findings reveal the TGF-β/TGFβR axis as a mediator of the tropism of BM-hMSCs for GSCs and suggest that TGF-β predicts patients in whom BM-hMSC delivery will be effective.