Cancer research
-
It has recently been suggested that bisphosphonates may have direct antitumor effects in vivo, in addition to their therapeutic antiresorptive properties. Bisphosphonates can inhibit proliferation and cause apoptosis in human myeloma cells in vitro. In macrophages, bisphosphonate-induced apoptosis was recently found to be a result of inhibition of the mevalonate (MVA) pathway. ⋯ Geranylgeraniol and farnesol prevented incadronate-induced apoptosis and had a partial effect on cell cycle arrest. MVA and geranylgeraniol prevented mevastatin-induced apoptosis and inhibition of proliferation and completely prevented the effect of mevastatin on the cell cycle. These observations demonstrate that incadronate-induced apoptosis in human myeloma cells in vitro is the result of inhibition of the MVA pathway.
-
The dramatic shift in the pathological presentation of lung cancer [the proportional decrease in squamous cell carcinoma (SCC) and increase in adenocarcinoma (AC)] observed in the United States after the 1950s may have taken place as the result of the reduction in polycyclic aromatic hydrocarbons (PAHs) and the increase in N-nitrosamines in inhaled smoke from filtered low-yield cigarettes. The predominant mutation patterns of these tumors also suggest differences in their etiology. We tested the hypothesis that genetic susceptibility to PAHs, as determined by polymorphisms in CYP1A1 and GSTM1, predominantly causes lung SCCs, and susceptibility to nitrosamines, as determined by polymorphisms in CYP2E1, predominantly causes lung ACs. ⋯ In contrast, the CYP2E1 RsaI and DraI polymorphisms were not clearly related to SCC risk, but these homozygous variant genotypes were associated with a 10-fold (95% CI, 0.0-0.5) decrease in the risk of overall lung cancer (RsaI variant) and AC (DraI variant) compared to the homozygous wild-type genotypes. Inverse associations with these two closely linked CYP2E1 polymorphisms were also suggested for small cell carcinoma. In agreement with past experimental and epidemiological data, the associations found in this study between CYP1A1 and lung SCC and between CYP2E1 and lung AC suggest a certain specificity of tobacco smoke PAHs for lung SCC and tobacco-specific nitrosamines for lung ACs.
-
Widespread use of MCF-7 human breast carcinoma cells as a model system for breast cancer has led to variations in these cells between different laboratories. Although several reports have addressed these differences in terms of proliferation and estrogenic response, variations in sensitivity to apoptosis have not yet been described. Tumor necrosis factor alpha (TNF-alpha) has been shown to both induce apoptosis and inhibit proliferation in MCF-7 cells. ⋯ Expression of the Bcl-2, Mcl-1, Bcl-X, Bax, and Bak proteins was analyzed to determine whether the differences in MCF-7 cell sensitivity to apoptosis could be correlated to the differential expression of these proteins. Whereas Bak, Bcl-X, and Mcl-1 levels were identical between variants, the levels of Bcl-2 were 3.5-3.8-fold higher and the levels of Bax were 1.5-1.7-fold lower in the resistant variants (M and L) as compared with those of the sensitive variant (N). Taken together, these results suggest that differences in susceptibility to TNF-alpha-induced apoptosis among MCF-7 breast cancer cell variants may be explained by differences in TNFR expression, ceramide generation, differential expression of the Bcl-2 family of proteins, and protease activation.
-
Interference with polyamine transport and biosynthesis has emerged as an important anticancer strategy involving polyamine analogues and specific inhibitors of key biosynthetic enzymes. Because the prostate gland has a high polyamine content, by using the polyamine transporter for selective uptake into cancer cells, alkylating polyamines are likely to be highly effective against prostatic tumors. We have recently synthesized a novel class of spermine analogues, the lead compound of which has efficacy against human cancer cells (P. ⋯ Terminal transferase end-labeling analysis indicated that BIS-mediated tumor regression in vivo occurs via induction of apoptosis among prostatic tumor cells. These results suggest that the novel spermine analogue BIS: (a) has a potent antitumor effect against prostatic tumors via induction of apoptosis; and (b) increases the radiosensitivity of human prostate cancer cells by decreasing the apoptotic threshold to radiation. This study may have important clinical implications for the manipulation of this antitumor activity of the polyamine analogue for the optimization of the therapeutic efficacy of radiation in patients with advanced prostate cancer.
-
At least 70% of small cell lung cancers (SCLCs) express the Kit receptor tyrosine kinase and its ligand, stem cell factor (SCF). In an effort to define the signal transduction pathways activated by Kit in SCLC, we focused on Src family kinases and, in particular, Lck, a Src-related tyrosine kinase that is expressed in hemopoietic cells and certain tumors, including SCLC. SCF treatment of the H526 cell line induced a physical association between Kit and Lck that, in vitro, was dependent on phosphorylation of the juxtamembrane domain of Kit. ⋯ PP1 had no effect on Kit kinase activity but was shown to block total Lck activity by at least 90% by immune complex kinase assay. Low levels of Src, Hck, and Yes were also expressed in the H526 cell line; only Yes showed a consistent increase in specific activity, which was also inhibited by PP1 following SCF treatment. These data demonstrate that, in the H526 SCLC cell line, Lck and, possibly, Yes are downstream of Kit in a signal transduction pathway; the inhibition by PP1 of SCF-mediated proliferation and inhibition of apoptosis suggests that Src family kinases are intermediates in the signaling pathways that regulate these processes.