Military medicine
-
Between 5% and 20% of all combat-related casualties are attributed to burn wounds. A decrease in the mortality rate of burns by about 36% can be achieved with early treatment, but this is contingent upon accurate characterization of the burn. Precise burn injury classification is recognized as a crucial aspect of the medical artificial intelligence (AI) field. An autonomous AI system designed to analyze multiple characteristics of burns using modalities including ultrasound and RGB images is described. ⋯ This work demonstrates the feasibility of accurate and automated burn characterization for AI and indicates that these systems can be improved with additional features when a human expert is combined with explainable AI. This is demonstrated on real data (human for segmentation and porcine for depth classification) and establishes the groundwork for further deep-learning thrusts in the area of burn analysis.
-
During mechanical ventilation, cyclic recruitment and derecruitment (R/D) of alveoli result in focal points of heterogeneous stress throughout the lung. In the acutely injured lung, the rates at which alveoli can be recruited or derecruited may also be altered, requiring longer times at higher pressure levels to be recruited during inspiration, but shorter times at lower pressure levels to minimize collapse during exhalation. In this study, we used a computational model to simulate the effects of airway pressure release ventilation (APRV) on acinar recruitment, with varying inspiratory pressure levels and durations of exhalation. ⋯ Our computational model demonstrates the confounding effects of cyclic R/D, sustained recruitment, and parenchymal strain stiffening on estimates of total lung elastance during APRV. Increasing inspiratory pressures leads to not only more sustained recruitment of unstable acini but also more intratidal R/D. Our model indicates that higher inspiratory pressures should be used in conjunction with shorter exhalation times, to avoid increasing intratidal R/D.
-
Prevention and treatment of traumatic brain injuries is critical to preserving soldier brain health. Laboratory studies are commonly used to reproduce injuries, understand injury mechanisms, and develop tolerance limits; however, this approach has limitations for studying brain injury, which requires a physiological response. The nonhuman primate (NHP) has been used as an effective model for investigating brain injury for many years. Prior research using the NHP provides a valuable resource to leverage using modern analysis and modeling techniques to improve our understanding of brain injury. The objectives of the present study are to develop an anatomically accurate finite element model of the NHP and determine regional brain responses using previously collected NHP data. ⋯ Recognizing that NHPs are the closest surrogate to humans combined with the limitations of conducting brain injury research in the laboratory, a detailed anatomically accurate finite element model of an NHP was developed and exercised using previously collected data from the Naval Biodynamics Laboratory. The presently developed model can be used to conduct additional analyses to act as pilot data for the design of newer experiments with statistical power because of the sensitivity and resources needed to conduct experiments with NHPs.
-
Evaluation of chronic respiratory symptoms in deployed military personnel has been conducted at Brooke Army Medical Center as part of the Study of Active Duty Military for Pulmonary Disease Related to Environmental Deployment Exposures III study. Although asthma and airway hyperreactivity have been the most common diagnoses, the clinical findings in these patients may be multifactorial. This study aims to evaluate the utility of impulse oscillometry (IOS) in diagnosing airway obstruction in patients undergoing multiple pulmonary function testing (PFT) studies. ⋯ Impulse oscillometry may serve as an adjunct to diagnosis but likely cannot replace a standard spirometric evaluation. Our study highlights the future utility for diagnosing early obstructive disease in the symptomatic individual.
-
Chronic pain is prevalent among U.S. military personnel and veterans. The effectiveness of evidence-based pain treatments can be boosted with knowledge of factors associated with chronic pain perception. This study examined the factors that influence soldiers' self-rating of their chronic pain intensity. ⋯ Pain interference in functioning and pain-related thoughts of helplessness accounted for a significant degree of the variance in soldiers' self-rating of their chronic pain. The findings suggest that added attention should be directed at helping patients boost their self-efficacy in using pain-coping methods to improve their functioning and address the perception of helplessness about their pain.