The Journal of experimental medicine
-
The sphingosine 1-phosphate receptor 1 (S1P(1)) promotes lymphocyte egress from lymphoid organs. Previous work showed that agonist-induced internalization of this G protein-coupled receptor correlates with inhibition of lymphocyte egress and results in lymphopenia. However, it is unclear if S1P(1) internalization is necessary for this effect. ⋯ Mutant mice exhibited significantly delayed lymphopenia after S1P(1) agonist administration or disruption of the vascular S1P gradient. Adoptive transfer experiments demonstrated that mutant S1P(1) expression in lymphocytes, rather than endothelial cells, facilitated this delay in lymphopenia. Thus, cell-surface residency of S1P(1) on T cells is a primary determinant of lymphocyte egress kinetics in vivo.
-
Acute-phase proteins (APPs) are an evolutionarily conserved family of proteins produced mainly in the liver in response to infection and inflammation. Despite vast pro- and antiinflammatory properties ascribed to individual APPs, their collective function during infections remains poorly defined. Using a mouse model of polymicrobial sepsis, we show that abrogation of APP production by hepatocyte-specific gp130 deletion, the signaling receptor shared by IL-6 family cytokines, strongly increased mortality despite normal bacterial clearance. ⋯ MDSCs were critical to regulate innate inflammation, and their adoptive transfer efficiently protected gp130-deficient mice from sepsis-associated mortality. The hepatic APPs serum amyloid A and Cxcl1/KC cooperatively promoted MDSC mobilization, accumulation, and survival, and reversed dysregulated inflammation and restored survival of gp130-deficient mice. Thus, gp130-dependent communication between the liver and MDSCs through APPs controls inflammatory responses during infection.