The Journal of immunology : official journal of the American Association of Immunologists
-
Acidification of C5 and C6 or serum to pH 6.4 at 0 degrees C, followed by neutralization, generates a factor-designated C(56)a that causes lysis of nonsensitized erythrocytes in the presence of C7, C8, and C9. C(56)a is functionally similar to alternative pathway-generated C5b,6 in respect to the formation of C5b,6,7 sites on cells, the potentiation of lytic activity by membrane-bound C3b or the membrane-active agent A2C, and the required species compatibilities between target membranes and terminal components for optimal activity. The formation of C(56)a complex from purified components C5 and C6 proceeds independently of the classical or alternative pathway C5 convertases and requires the simultaneous H+ ion treatment of the components. ⋯ Acid activation also produced a 109,000 dalton C5 alpha'-fragment barely detectable with classical pathway activation. Low pH treatment of C5 alone did not inactivate C5 function, form a lytic complex on the subsequent addition of C6, or cleave the C5 alpha-chain. Thus, it is postulated that local high H+ ion concentration during simultaneous acidification of C5 and C6 allows complex formation with the concomitant C6-dependent cleavage of the C5 alpha-chain and the generation of lytic capacity.