The Journal of immunology : official journal of the American Association of Immunologists
-
The peroxisome proliferator-activated receptor gamma (PPAR-gamma) belongs to a receptor superfamily of ligand-activated transcription factors involved in the regulation of metabolism and inflammation. Oral administration of PPAR-gamma agonists ameliorates the clinical course and histopathological features in experimental autoimmune encephalomyelitis, an animal model for multiple sclerosis (MS), and PPAR-gamma agonist treatment of PBMCs from MS patients suppresses PHA-induced cell proliferation and cytokine secretion. These effects are pronounced when cells are preincubated with the PPAR-gamma agonists and reexposed at the time of stimulation, indicating a sensitizing effect. ⋯ Additionally, preincubation decreased NF-kappaB DNA-binding activity to control levels, whereas the inhibitory protein IkappaBalpha was increased. In MS patients, pioglitazone-induced increase in PPAR-gamma DNA-binding activity and decrease in NF-kappaB DNA-binding activity was only observed in the absence of an acute MS relapse. These results suggest that the sensitizing effect observed in the preincubation experiments is mediated by prevention of inflammation-induced suppression of PPAR-gamma expression with consecutive increase in PPAR-gamma DNA-binding activity.
-
Comparative Study
Molecular basis of reduced potency of underacylated endotoxins.
Potent TLR4-dependent cell activation by gram-negative bacterial endotoxins depends on sequential endotoxin-protein and protein-protein interactions with LPS-binding protein, CD14, myeloid differentiation protein 2 (MD-2), and TLR4. Previous studies have suggested that reduced agonist potency of underacylated endotoxins (i.e., tetra- or penta- vs hexa-acylated) is determined by post-CD14 interactions. To better define the molecular basis of the differences in agonist potency of endotoxins differing in fatty acid acylation, we compared endotoxins (lipooligosaccharides (LOS)) from hexa-acylated wild-type (wt), penta-acylated mutant msbB meningococcal strains as well as tetra-acylated LOS generated by treatment of wt LOS with the deacylating enzyme, acyloxyacylhydrolase. ⋯ However, msbB LOS:MD-2 and acyloxyacylhydrolase-treated LOS:MD-2 were at least 10-fold less potent in inducing TLR4-dependent cell activation than wt LOS:MD-2 and partially antagonized the action of wt LOS:MD-2. These findings suggest that underacylated endotoxins produce decreased TLR4-dependent cell activation by altering the interaction of the endotoxin:MD-2 complex with TLR4 in a way that reduces receptor activation. Differences in potency among these endotoxin species is determined not by different aggregate properties, but by different properties of monomeric endotoxin:MD-2 complexes.