The Journal of immunology : official journal of the American Association of Immunologists
-
The systemic inflammatory response syndrome and subsequent organ failure are mainly driven by activated neutrophils with prolonged life span, which is believed to be due to apoptosis resistance. However, detailed underlying mechanisms leading to neutrophil apoptosis resistance are largely unknown, and possible therapeutic options to overcome this resistance do not exist. Here we report that activated neutrophils from severely injured patients exhibit cell death resistance due to impaired activation of the intrinsic apoptosis pathway, as evidenced by limited staurosporine-induced mitochondrial membrane depolarization and decreased caspase-9 activity. ⋯ However, cross-linking of neutrophil Fas by immobilized agonistic anti-Fas IgM resulted in caspase-dependent mitochondrial membrane depolarization and apoptosis induction. In conclusion, the observed impairment of the intrinsic pathway and the resulting apoptosis resistance may be overcome by immobilized agonistic anti-Fas IgM. Targeting of neutrophil Fas by immobilized agonistic effector molecules may represent a new therapeutic tool to limit neutrophil hyperactivation and its sequelae in patients with severe immune disorders.
-
Alternatively activated macrophages (AAM) play a crucial role in type 2 immunity. Mice deficient in ST2, a receptor for the latest member of the IL-1 family, IL-33, have impaired type 2 immune responses. We therefore reasoned that IL-33/ST2 signaling may be involved in the differentiation and activation of AAM during airway inflammation. ⋯ IL-13/IL-4Ralpha signaling was crucial for IL-33-driven AAM amplification by inducing the expression of ST2L. Finally, we showed that IL-33 was more abundantly expressed in the lung epithelial cells of asthma patients than those from healthy controls, suggesting that IL-33 may be involved in lung macrophage activation in clinical asthma. Taken together, we demonstrate here that IL-33/ST2 plays a significant role in the amplification of AAM polarization and chemokine production which contribute to innate and Ag-induced airway inflammation.