The Journal of immunology : official journal of the American Association of Immunologists
-
NKT cells have been described as innate regulatory cells because of their rapid response to conserved glycolipids presented on CD1d via their invariant TCR. However, little is known about the contribution of the hepatic NKT cell to the development of a local and/or systemic immune response to acute septic challenge (cecal ligation and puncture (CLP)). We found not only that mice deficient in invariant NKT cells (Jalpha18(-/-)) had a marked attenuation in CLP-induced mortality, but also exhibited an oblation of the systemic inflammatory response (with little effect on splenic/peritoneal immune responsiveness). ⋯ This was associated with the marked activation of these cells (increased expression of CD69 and CD25) as well as a rise in the frequency of NKT cells positive for both Th1 and Th2 intracellular cytokines. In this respect, when mice were pretreated in vivo with anti-CD1d-blocking Ab, we observed not only that this inhibited the systemic rise of IL-6 and IL-10 levels in septic mice and improved overall septic survival, but that the CLP-induced changes in liver macrophage IL-6 and IL-10 expressions were inversely effected by this treatment. Together, these findings suggest that the activation of hepatic invariant NKT cells plays a critical role in regulating the innate immune/systemic inflammatory response and survival in a model of acute septic shock.
-
Comparative Study
The critical role of epithelial-derived Act1 in IL-17- and IL-25-mediated pulmonary inflammation.
IL-25 initiates, promotes, and augments Th2 immune responses. In this study, we report that Act1, a key component in IL-17-mediated signaling, is an essential signaling molecule for IL-25 signaling. Although Act1-deficient mice showed reduced expression of KC (CXCL1) and neutrophil recruitment to the airway compared with wild-type mice in response to IL-17 stimulation, Act1 deficiency abolished IL-25-induced expression of IL-4, IL-5, IL-13, eotaxin-1 (CCL11), and pulmonary eosinophilia. ⋯ Importantly, Act1 deficiency in epithelial cells reduced the phenotype of allergic pulmonary inflammation due to loss of IL-17-induced neutrophilia and IL-25-induced eosinophilia, respectively. These results demonstrate the essential role of epithelial-derived Act1 in allergic pulmonary inflammation through the distinct impact of the IL-17R-Act1 and IL-25R-Act1 axes. Such findings are crucial for the understanding of pathobiology of atopic diseases, including allergic asthma, which identifies Act1 as a potential therapeutic target.
-
Cancer vaccines aim to induce antitumor CTL responses, which require cross-presentation of tumor Ag to CTLs by dendritic cells (DCs). Adjuvants that facilitate cross-presentation of vaccine Ag are therefore key for inducing antitumor immunity. We previously reported that human DCs could not efficiently cross-present the full-length cancer/testis Ag NY-ESO-1 to CTL unless formulated as either an immune complex (NY-ESO-1/IC) or with ISCOMATRIX adjuvant. ⋯ Interestingly, ICs were retained in lysosomes, whereas ISCOMATRIX adjuvant induced rapid Ag translocation into the cytosol. Ag translocation was dependent on endosomal acidification and IL-4-driven differentiation of monocytes into DCs. This study demonstrates that Ag formulation determines Ag processing and supports a role for tripeptidyl peptidase II in cross-presentation of CTL epitopes restricted to diverse HLA alleles.